Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States.
Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, United States.
J Chem Inf Model. 2024 Feb 26;64(4):1331-1346. doi: 10.1021/acs.jcim.3c01615. Epub 2024 Feb 12.
Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.
动力学驱动的变构作用为蛋白质(尤其是酶)的工作机制提供了重要的见解。在这项研究中,我们采用这一范例来回答一个基本问题:在催化机制、活性位点和蛋白质折叠都保守的酶超家族中,个体成员的催化能力差异是由什么决定的?我们表明,当序列的细微变化没有转化为结构的变化时,它们确实会转化为动力学的变化。我们使用序列多样化的 PTP1B、TbPTP1 和 YopH 作为保守的蛋白酪氨酸磷酸酶(PTP)超家族的代表。通过对群体行为(社区分析)的氨基酸网络分析和网络上的影响节点主导地位(特征向量中心性),我们解释了这三种蛋白质之间观察到的催化变化的动力学基础。重要的是,我们解释了基于动力学的蓝图如何使 PTP1B 易于变构控制,以及 TbPTP1 和 YopH 是如何抽象出这种蓝图的。