Suppr超能文献

构建用于锂离子电池高性能硅基负极的稳定导电网络

Constructing a Stable Conductive Network for High-Performance Silicon-Based Anode in Lithium-Ion Batteries.

作者信息

Liu Wenjing, Su Shaoxiang, Wang Yao, Wang Hao, Wang Feng, Wang Guodong, Qu Meizhen, Peng Gongchang, Xie Zhengwei

机构信息

Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China.

Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2024 Feb 28;16(8):10703-10713. doi: 10.1021/acsami.3c17942. Epub 2024 Feb 14.

Abstract

The application of carbon nanotubes to silicon nanoparticles has been used to improve the electrical conductivity of silicon-carbon anodes and prevent agglomeration of silicon nanoparticles during cycling. In this study, the composites are synthesized through an uncomplicated technique that involves the ultrasonication mixing of pyrene derivatives and carbon nanotubes and the formation of complexes with silicon nanoparticles in ultrasonic dispersion and magnetic stirring and then treated under vacuum. When the prepared composites are applied as lithium-ion battery anodes, the Si@(POH-AOCNTs) electrode displays a high reversible capacity of 3254.7 mAh g at a current density of 0.1 A g. Furthermore, it exhibits excellent cycling stability with a specific capacity of 1195.8 mAh g after 500 cycles at 1.0 A g. The superior electrochemical performance may be attributed to a large π-conjugated electron system of pyrene derivatives, which prompts the formation of a homogeneous CNTs conductive network and ensures the effective electron transfer, while the interaction between hydroxyl functional groups of hydroxypyrene and binder synergizes with CNTs network to further enhance the cycling stability of the composite.

摘要

碳纳米管应用于硅纳米颗粒已被用于提高硅碳负极的电导率,并防止硅纳米颗粒在循环过程中发生团聚。在本研究中,通过一种简单的技术合成复合材料,该技术包括芘衍生物与碳纳米管的超声混合,以及在超声分散和磁力搅拌下与硅纳米颗粒形成络合物,然后在真空下进行处理。当将制备的复合材料用作锂离子电池负极时,Si@(POH-AOCNTs)电极在电流密度为0.1 A g时显示出3254.7 mAh g的高可逆容量。此外,在1.0 A g下循环500次后,它表现出优异的循环稳定性,比容量为1195.8 mAh g。优异的电化学性能可能归因于芘衍生物的大π共轭电子体系,这促使形成均匀的碳纳米管导电网络并确保有效的电子转移,而羟基芘的羟基官能团与粘结剂之间的相互作用与碳纳米管网络协同作用,进一步提高了复合材料的循环稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验