United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA.
Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA.
Microbiol Spectr. 2024 Mar 5;12(3):e0357823. doi: 10.1128/spectrum.03578-23. Epub 2024 Feb 14.
Screening assays are used to test if one or more microbes suppress a pathogen of interest. In the presence of more than one microbe, the screening method must be able to accurately distinguish viable pathogen cells from non-viable and non-target microbes in a sample. Current screening methods are time-consuming and require special reagents to detect viability in mixed microbial communities. Screening assays performed using soil or other complex matrices present additional challenges for screening. Here, we develop an experimental workflow based on the most probable number (MPN) assay for testing the ability of synthetic microbial communities to suppress a soil-borne pathogen. Our approach, fluorMPN, uses a fluorescently labeled pathogen and microplate format to enable high-throughput comparative screening. In parallel, we developed a command-line tool, MicroMPN, which significantly reduces the complexity of calculating MPN values from microplates. We compared the performance of the fluorMPN assay with spotting on agar and found that both methods produced strongly correlated counts of equal precision. The suppressive effect of synthetic communities on the pathogen was equally recoverable by both methods. The application of this workflow for discriminating which communities lead to pathogen reduction helps narrow down candidates for additional characterization. Together, the resources offered here are meant to facilitate and simplify the application of MPN-based assays for comparative screening projects.
We created a unified set of software and laboratory protocols for screening microbe libraries to assess the suppression of a pathogen in a mixed microbial community. Existing methods of fluorescent labeling were combined with the most probable number (MPN) assay in a microplate format to enumerate the reduction of a pathogenic soil microbe from complex soil matrices. This work provides a fluorescent expression vector available from Addgene, step-by-step laboratory protocols hosted by protocols.io, and MicroMPN, a command-line software for processing plate reader outputs. MicroMPN simplifies MPN estimation from 96- and 384-well microplates. The microplate screening assay is amenable to robotic automation with standard liquid handling robots, further reducing the hands-on processing time. This tool was designed to evaluate synthetic microbial communities for use as microbial inoculates or probiotics. The fluorMPN method is also useful for screening chemical and antimicrobial libraries for pathogen suppression in complex bacterial communities like soil.
筛选检测用于测试一种或多种微生物是否能抑制感兴趣的病原体。在存在多种微生物的情况下,筛选方法必须能够准确区分样本中存活的病原体细胞与非存活的和非目标微生物。目前的筛选方法耗时且需要特殊试剂来检测混合微生物群落中的活力。使用土壤或其他复杂基质进行筛选检测会带来额外的挑战。在这里,我们开发了一种基于最可能数(MPN)检测的实验工作流程,用于测试合成微生物群落抑制土壤传播病原体的能力。我们的方法,荧光 MPN,使用荧光标记的病原体和微孔板格式来实现高通量比较筛选。同时,我们开发了一个命令行工具,MicroMPN,它大大简化了从微孔板计算 MPN 值的复杂性。我们比较了荧光 MPN 检测与琼脂点样的性能,发现这两种方法都能产生具有相同精度的强相关计数。两种方法都能同样可靠地恢复合成群落对病原体的抑制作用。应用该工作流程来区分哪些群落导致病原体减少有助于缩小进一步表征的候选者范围。总之,这里提供的资源旨在促进和简化基于 MPN 的检测方法在比较筛选项目中的应用。
我们创建了一套统一的软件和实验室方案,用于筛选微生物文库,以评估混合微生物群落中微生物对病原体的抑制作用。现有的荧光标记方法与微孔板格式中的最可能数(MPN)检测相结合,用于从复杂土壤基质中计数致病土壤微生物的减少。这项工作提供了一个可从 Addgene 获得的荧光表达载体,一个在 protocols.io 上托管的逐步实验室方案,以及 MicroMPN,这是一个用于处理微孔板读数输出的命令行软件。MicroMPN 简化了 96 孔和 384 孔微孔板的 MPN 估计。微孔板筛选检测可与标准液体处理机器人配合进行机器人自动化,进一步减少手动处理时间。该工具旨在评估用于作为微生物接种物或益生菌的合成微生物群落。荧光 MPN 方法也可用于筛选化学和抗菌文库,以抑制土壤等复杂细菌群落中的病原体。