Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.
Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University.
Circ J. 2024 Jun 25;88(7):1089-1098. doi: 10.1253/circj.CJ-23-0808. Epub 2024 Feb 14.
The aim of this study was to build an auto-segmented artificial intelligence model of the atria and epicardial adipose tissue (EAT) on computed tomography (CT) images, and examine the prognostic significance of auto-quantified left atrium (LA) and EAT volumes for AF.
This retrospective study included 334 patients with AF who were referred for catheter ablation (CA) between 2015 and 2017. Atria and EAT volumes were auto-quantified using a pre-trained 3-dimensional (3D) U-Net model from pre-ablation CT images. After adjusting for factors associated with AF, Cox regression analysis was used to examine predictors of AF recurrence. The mean (±SD) age of patients was 56±11 years; 251 (75%) were men, and 79 (24%) had non-paroxysmal AF. Over 2 years of follow-up, 139 (42%) patients experienced recurrence. Diabetes, non-paroxysmal AF, non-pulmonary vein triggers, mitral line ablation, and larger LA, right atrium, and EAT volume indices were linked to increased hazards of AF recurrence. After multivariate adjustment, non-paroxysmal AF (hazard ratio [HR] 0.6; 95% confidence interval [CI] 0.4-0.8; P=0.003) and larger LA-EAT volume index (HR 1.1; 95% CI 1.0-1.2; P=0.009) remained independent predictors of AF recurrence.
LA-EAT volume measured using the auto-quantified 3D U-Net model is feasible for predicting AF recurrence after CA, regardless of AF type.
本研究旨在构建基于 CT 图像的心房和心外膜脂肪组织(EAT)自动分割人工智能模型,并探讨自动量化的左心房(LA)和 EAT 体积对 AF 的预测价值。
这项回顾性研究纳入了 2015 年至 2017 年间因导管消融(CA)而接受治疗的 334 例 AF 患者。使用预先训练的 3 维(3D)U-Net 模型自动量化 CT 图像上的心房和 EAT 体积。在调整了与 AF 相关的因素后,使用 Cox 回归分析来检测 AF 复发的预测因素。患者的平均(±SD)年龄为 56±11 岁;251 例(75%)为男性,79 例(24%)为非阵发性 AF。在 2 年的随访期间,139 例(42%)患者复发。糖尿病、非阵发性 AF、非肺静脉触发、二尖瓣线消融术以及更大的 LA、右心房和 EAT 体积指数与 AF 复发的风险增加有关。在多变量调整后,非阵发性 AF(风险比 [HR] 0.6;95%置信区间 [CI] 0.4-0.8;P=0.003)和更大的 LA-EAT 体积指数(HR 1.1;95% CI 1.0-1.2;P=0.009)仍然是 AF 复发的独立预测因素。
使用自动量化的 3D U-Net 模型测量的 LA-EAT 体积可用于预测 CA 后 AF 的复发,与 AF 类型无关。