Suppr超能文献

大鼠颈椎脊髓血管造影及血管选择性灌注成像。

Cervical spinal cord angiography and vessel-selective perfusion imaging in the rat.

机构信息

Joint Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

出版信息

NMR Biomed. 2024 Jun;37(6):e5115. doi: 10.1002/nbm.5115. Epub 2024 Feb 14.

Abstract

Arterial spin labeling (ASL) has been widely used to evaluate arterial blood and perfusion dynamics, particularly in the brain, but its application to the spinal cord has been limited. The purpose of this study was to optimize vessel-selective pseudocontinuous arterial spin labeling (pCASL) for angiographic and perfusion imaging of the rat cervical spinal cord. A pCASL preparation module was combined with a train of gradient echoes for dynamic angiography. The effects of the echo train flip angle, label duration, and a Cartesian or radial readout were compared to examine their effects on visualizing the segmental arteries and anterior spinal artery (ASA) that supply the spinal cord. Lastly, vessel-selective encoding with either vessel-encoded pCASL (VE-pCASL) or super-selective pCASL (SS-pCASL) were compared. Vascular territory maps were obtained with VE-pCASL perfusion imaging of the spinal cord, and the interanimal variability was evaluated. The results demonstrated that longer label durations (200 ms) resulted in greater signal-to-noise ratio in the vertebral arteries, improved the conspicuity of the ASA, and produced better quality maps of blood arrival times. Cartesian and radial readouts demonstrated similar image quality. Both VE-pCASL and SS-pCASL adequately labeled the right or left vertebral arteries, which revealed the interanimal variability in the segmental artery with variations in their location, number, and laterality. VE-pCASL also demonstrated unique interanimal variations in spinal cord perfusion with a right-sided dominance across the six animals. Vessel-selective pCASL successfully achieved visualization of the arterial inflow dynamics and corresponding perfusion territories of the spinal cord. These methodological developments provide unique insights into the interanimal variations in the arterial anatomy and dynamics of spinal cord perfusion.

摘要

动脉自旋标记(ASL)已广泛用于评估动脉血液和灌注动力学,特别是在大脑中,但在脊髓中的应用受到限制。本研究旨在优化血管选择性假性连续动脉自旋标记(pCASL),用于大鼠颈脊髓的血管造影和灌注成像。将 pCASL 准备模块与梯度回波序列相结合,用于动态血管造影。比较了回波序列翻转角、标记持续时间以及笛卡尔或径向读出对可视化节段动脉和供应脊髓的前脊髓动脉(ASA)的影响。最后,比较了使用血管编码 pCASL(VE-pCASL)或超选择性 pCASL(SS-pCASL)进行血管选择性编码的效果。通过 VE-pCASL 对脊髓进行灌注成像,获得血管分布图谱,并评估了动物间的变异性。结果表明,较长的标记持续时间(200ms)导致椎动脉的信噪比更高,提高了 ASA 的显影度,并产生了更好的血液到达时间图谱质量。笛卡尔和径向读出显示出相似的图像质量。VE-pCASL 和 SS-pCASL 都能充分标记右侧或左侧椎动脉,揭示了节段动脉的动物间变异性,表现在其位置、数量和侧别上的差异。VE-pCASL 还显示了脊髓灌注中独特的动物间变异性,六个动物中存在右侧优势。血管选择性 pCASL 成功实现了对脊髓动脉流入动力学和相应灌注区域的可视化。这些方法学的发展为脊髓动脉解剖和灌注动力学的动物间变异性提供了独特的见解。

相似文献

1
Cervical spinal cord angiography and vessel-selective perfusion imaging in the rat.
NMR Biomed. 2024 Jun;37(6):e5115. doi: 10.1002/nbm.5115. Epub 2024 Feb 14.
2
Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat.
J Cereb Blood Flow Metab. 2021 Aug;41(8):2010-2025. doi: 10.1177/0271678X20982396. Epub 2021 Jan 28.
4
Comparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T.
Magn Reson Med. 2023 Jun;89(6):2305-2317. doi: 10.1002/mrm.29603. Epub 2023 Feb 6.
6
Simultaneous acquisition of perfusion image and dynamic MR angiography using time-encoded pseudo-continuous ASL.
Magn Reson Med. 2018 May;79(5):2676-2684. doi: 10.1002/mrm.26926. Epub 2017 Sep 14.
8
Fast cerebral flow territory mapping using vessel encoded dynamic arterial spin labeling (VE-DASL).
Magn Reson Med. 2016 May;75(5):2041-9. doi: 10.1002/mrm.25806. Epub 2015 Jun 22.
10
Off-resonance correction for pseudo-continuous arterial spin labeling using the optimized encoding scheme.
Neuroimage. 2019 Oct 1;199:304-312. doi: 10.1016/j.neuroimage.2019.05.083. Epub 2019 May 31.

本文引用的文献

1
Comparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T.
Magn Reson Med. 2023 Jun;89(6):2305-2317. doi: 10.1002/mrm.29603. Epub 2023 Feb 6.
2
Optimization of 4D combined angiography and perfusion using radial imaging and arterial spin labeling.
Magn Reson Med. 2023 May;89(5):1853-1870. doi: 10.1002/mrm.29558. Epub 2022 Dec 19.
3
Differential Trajectory of Diffusion and Perfusion Magnetic Resonance Imaging of Rat Spinal Cord Injury.
J Neurotrauma. 2023 May;40(9-10):918-930. doi: 10.1089/neu.2022.0283. Epub 2022 Nov 7.
4
Recent Technical Developments in ASL: A Review of the State of the Art.
Magn Reson Med. 2022 Nov;88(5):2021-2042. doi: 10.1002/mrm.29381. Epub 2022 Aug 19.
6
Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat.
J Cereb Blood Flow Metab. 2021 Aug;41(8):2010-2025. doi: 10.1177/0271678X20982396. Epub 2021 Jan 28.
7
High-Resolution Neurovascular Imaging at 7T: Arterial Spin Labeling Perfusion, 4-Dimensional MR Angiography, and Black Blood MR Imaging.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):53-65. doi: 10.1016/j.mric.2020.09.003. Epub 2020 Nov 2.
8
Is the asymmetry between the vertebral arteries related to cerebral dominance?
Turk J Med Sci. 2019 Dec 16;49(6):1721-1726. doi: 10.3906/sag-1904-161.
10
Robust pCASL perfusion imaging using a 3D Cartesian acquisition with spiral profile reordering (CASPR).
Magn Reson Med. 2019 Nov;82(5):1713-1724. doi: 10.1002/mrm.27862. Epub 2019 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验