Granek Rony, Hoffmann Ingo, Kelley Elizabeth G, Nagao Michihiro, Vlahovska Petia M, Zilman Anton
Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
Institut Laue-Langevin (ILL), 71 Avenue des Martys, 38042, Grenoble, CEDEX 9, France.
Eur Phys J E Soft Matter. 2024 Feb 14;47(2):12. doi: 10.1140/epje/s10189-023-00400-9.
We consider the dynamic structure factor (DSF) of quasi-spherical vesicles and present a generalization of an expression that was originally formulated by Zilman and Granek (ZG) for scattering from isotropically oriented quasi-flat membrane plaquettes. The expression is obtained in the form of a multi-dimensional integral over the undulating membrane surface. The new expression reduces to the original stretched exponential form in the limit of sufficiently large vesicles, i.e., in the micron range or larger. For much smaller unilamellar vesicles, deviations from the asymptotic, stretched exponential equation are noticeable even if one assumes that the Seifert-Langer leaflet density mode is completely relaxed and membrane viscosity is neglected. To avoid the need for an exhaustive numerical integration while fitting to neutron spin echo (NSE) data, we provide a useful approximation for polydisperse systems that tests well against the numerical integration of the complete expression. To validate the new expression, we performed NSE experiments on variable-size vesicles made of a POPC/POPS lipid mixture and demonstrate an advantage over the original stretched exponential form or other manipulations of the original ZG expression that have been deployed over the years to fit the NSE data. In particular, values of the membrane bending rigidity extracted from the NSE data using the new approximations were insensitive to the vesicle radii and scattering wavenumber and compared very well with expected values of the effective bending modulus ([Formula: see text]) calculated from results in the literature. Moreover, the generalized scattering theory presented here for an undulating quasi-spherical shell can be easily extended to other models for the membrane undulation dynamics beyond the Helfrich Hamiltonian and thereby provides the foundation for the study of the nanoscale dynamics in more complex and biologically relevant model membrane systems.
我们考虑了准球形囊泡的动态结构因子(DSF),并给出了一个表达式的推广形式,该表达式最初由齐尔曼(Zilman)和格拉内克(Granek)(ZG)提出,用于描述从各向同性取向的准平面膜片的散射。该表达式以起伏膜表面上的多维积分形式获得。在足够大的囊泡(即微米范围或更大)的极限情况下,新表达式简化为原始的拉伸指数形式。对于小得多的单层囊泡,即使假设塞弗特 - 兰格小叶密度模式完全松弛且忽略膜粘度,与渐近拉伸指数方程的偏差也很明显。为了在拟合中子自旋回波(NSE)数据时避免进行详尽的数值积分,我们为多分散系统提供了一个有用的近似,该近似与完整表达式的数值积分相比测试效果良好。为了验证新表达式,我们对由POPC/POPS脂质混合物制成的不同大小的囊泡进行了NSE实验,并证明了其相对于原始拉伸指数形式或多年来用于拟合NSE数据的原始ZG表达式的其他处理方法的优势。特别是,使用新近似从NSE数据中提取的膜弯曲刚度值对囊泡半径和散射波数不敏感,并且与根据文献结果计算的有效弯曲模量([公式:见正文])的预期值非常吻合。此外,这里提出的用于起伏准球壳的广义散射理论可以很容易地扩展到超越赫尔弗里希哈密顿量的膜起伏动力学的其他模型,从而为研究更复杂和生物学相关的模型膜系统中的纳米级动力学提供了基础。