迈向更稳健的生理药代动力学模型预测性能评估:利用置信区间支持模型指导用药在临床实践中的应用。
Towards More Robust Evaluation of the Predictive Performance of Physiologically Based Pharmacokinetic Models: Using Confidence Intervals to Support Use of Model-Informed Dosing in Clinical Care.
机构信息
Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
Department of Mathematics, Radboud University Nijmegen, Nijmegen, The Netherlands.
出版信息
Clin Pharmacokinet. 2024 Mar;63(3):343-355. doi: 10.1007/s40262-023-01326-3. Epub 2024 Feb 15.
BACKGROUND AND OBJECTIVE
With the rise in the use of physiologically based pharmacokinetic (PBPK) modeling over the past decade, the use of PBPK modeling to underpin drug dosing for off-label use in clinical care has become an attractive option. In order to use PBPK models for high-impact decisions, thorough qualification and validation of the model is essential to gain enough confidence in model performance. Currently, there is no agreed method for model acceptance, while clinicians demand a clear measure of model performance before considering implementing PBPK model-informed dosing. We aim to bridge this gap and propose the use of a confidence interval for the predicted-to-observed geometric mean ratio with predefined boundaries. This approach is similar to currently accepted bioequivalence testing procedures and can aid in improved model credibility and acceptance.
METHODS
Two different methods to construct a confidence interval are outlined, depending on whether individual observations or aggregate data are available from the clinical comparator data sets. The two testing procedures are demonstrated for an example evaluation of a midazolam PBPK model. In addition, a simulation study is performed to demonstrate the difference between the twofold criterion and our proposed method.
RESULTS
Using midazolam adult pharmacokinetic data, we demonstrated that creating a confidence interval yields more robust evaluation of the model than a point estimate, such as the commonly used twofold acceptance criterion. Additionally, we showed that the use of individual predictions can reduce the number of required test subjects. Furthermore, an easy-to-implement software tool was developed and is provided to make our proposed method more accessible.
CONCLUSIONS
With this method, we aim to provide a tool to further increase confidence in PBPK model performance and facilitate its use for directly informing drug dosing in clinical care.
背景与目的
过去十年中,生理药代动力学(PBPK)模型的应用日益增多,因此,利用 PBPK 模型为临床护理中的超说明书用药剂量提供依据已成为一种颇具吸引力的选择。为了能够利用 PBPK 模型进行高影响力决策,透彻地对模型进行资格认证和验证对于增强对模型性能的信心至关重要。目前,尚无公认的模型接受方法,而临床医生在考虑实施 PBPK 模型指导的剂量之前,需要明确衡量模型性能的方法。我们旨在弥合这一差距,并提出使用具有预定义边界的预测与观测几何均数比的置信区间的方法。这种方法类似于目前接受的生物等效性测试程序,有助于提高模型可信度和可接受性。
方法
概述了两种不同的置信区间构建方法,具体取决于是否可以从临床对照数据集获得个体观察值或汇总数据。以评价咪达唑仑 PBPK 模型为例,演示了这两种测试程序。此外,还进行了模拟研究,以展示两倍标准和我们提出的方法之间的差异。
结果
使用咪达唑仑成人药代动力学数据,我们证明创建置信区间比常用的两倍接受标准等单点估计能更稳健地评估模型。此外,我们表明,使用个体预测可以减少所需的测试对象数量。此外,还开发并提供了易于实施的软件工具,以提高我们提出的方法的可及性。
结论
通过这种方法,我们旨在提供一种工具,进一步提高对 PBPK 模型性能的信心,并促进其在临床护理中直接为药物剂量调整提供信息。