Suppr超能文献

机器学习对成人脊柱畸形患者进行聚类分析,确定了四种预后表型:一项多中心前瞻性队列分析,具有单一外科医生的外部验证。

Machine learning clustering of adult spinal deformity patients identifies four prognostic phenotypes: a multicenter prospective cohort analysis with single surgeon external validation.

机构信息

Department of Orthopaedics, Columbia University Medical Center, New York, NY, USA.

Department of Orthopaedics, Columbia University Medical Center, New York, NY, USA.

出版信息

Spine J. 2024 Jun;24(6):1095-1108. doi: 10.1016/j.spinee.2024.02.010. Epub 2024 Feb 15.

Abstract

BACKGROUND CONTEXT

Among adult spinal deformity (ASD) patients, heterogeneity in patient pathology, surgical expectations, baseline impairments, and frailty complicates comparisons in clinical outcomes and research. This study aims to qualitatively segment ASD patients using machine learning-based clustering on a large, multicenter, prospectively gathered ASD cohort.

PURPOSE

To qualitatively segment adult spinal deformity patients using machine learning-based clustering on a large, multicenter, prospectively gathered cohort.

STUDY DESIGN/SETTING: Machine learning algorithm using patients from a prospective multicenter study and a validation cohort from a retrospective single center, single surgeon cohort with complete 2-year follow up.

PATIENT SAMPLE

About 805 ASD patients; 563 patients from a prospective multicenter study and 242 from a single center to be used as a validation cohort.

OUTCOME MEASURES

To validate and extend the Ames-ISSG/ESSG classification using machine learning-based clustering analysis on a large, complex, multicenter, prospectively gathered ASD cohort.

METHODS

We analyzed a training cohort of 563 ASD patients from a prospective multicenter study and a validation cohort of 242 ASD patients from a retrospective single center/surgeon cohort with complete two-year patient-reported outcomes (PROs) and clinical/radiographic follow-up. Using k-means clustering, a machine learning algorithm, we clustered patients based on baseline PROs, Edmonton frailty, age, surgical history, and overall health. Baseline differences in clusters identified using the training cohort were assessed using Chi-Squared and ANOVA with pairwise comparisons. To evaluate the classification system's ability to discern postoperative trajectories, a second machine learning algorithm assigned the single-center/surgeon patients to the same 4 clusters, and we compared the clusters' two-year PROs and clinical outcomes.

RESULTS

K-means clustering revealed four distinct phenotypes from the multicenter training cohort based on age, frailty, and mental health: Old/Frail/Content (OFC, 27.7%), Old/Frail/Distressed (OFD, 33.2%), Old/Resilient/Content (ORC, 27.2%), and Young/Resilient/Content (YRC, 11.9%). OFC and OFD clusters had the highest frailty scores (OFC: 3.76, OFD: 4.72) and a higher proportion of patients with prior thoracolumbar fusion (OFC: 47.4%, OFD: 49.2%). ORC and YRC clusters exhibited lower frailty scores and fewest patients with prior thoracolumbar procedures (ORC: 2.10, 36.6%; YRC: 0.84, 19.4%). OFC had 69.9% of patients with global sagittal deformity and the highest T1PA (29.0), while YRC had 70.2% exhibiting coronal deformity, the highest mean coronal Cobb Angle (54.0), and the lowest T1PA (11.9). OFD and ORC had similar alignment phenotypes with intermediate values for Coronal Cobb Angle (OFD: 33.7; ORC: 40.0) and T1PA (OFD: 24.9; ORC: 24.6) between OFC (worst sagittal alignment) and YRC (worst coronal alignment). In the single surgeon validation cohort, the OFC cluster experienced the greatest increase in SRS Function scores (1.34 points, 95%CI 1.01-1.67) compared to OFD (0.5 points, 95%CI 0.245-0.755), ORC (0.7 points, 95%CI 0.415-0.985), and YRC (0.24 points, 95%CI -0.024-0.504) clusters. OFD cluster patients improved the least over 2 years. Multivariable Cox regression analysis demonstrated that the OFD cohort had significantly worse reoperation outcomes compared to other clusters (HR: 3.303, 95%CI: 1.085-8.390).

CONCLUSION

Machine-learning clustering found four different ASD patient qualitative phenotypes, defined by their age, frailty, physical functioning, and mental health upon presentation, which primarily determines their ability to improve their PROs following surgery. This reaffirms that these qualitative measures must be assessed in addition to the radiographic variables when counseling ASD patients regarding their expected surgical outcomes.

摘要

背景语境

在成人脊柱畸形(ASD)患者中,患者病理、手术预期、基线损伤和脆弱性的异质性使临床结果和研究的比较复杂化。本研究旨在使用基于机器学习的聚类方法对大型多中心前瞻性 ASD 队列进行定性分段。

目的

使用基于机器学习的聚类算法对大型多中心前瞻性收集的 ASD 队列进行定性分段。

研究设计/设置:使用前瞻性多中心研究中的患者和回顾性单中心、单外科医生队列的验证队列(具有完整的 2 年随访)中的患者进行机器学习算法。

患者样本

约 805 例 ASD 患者;前瞻性多中心研究中的 563 例患者和单中心的 242 例患者作为验证队列。

结果测量

使用基于机器学习的聚类分析对大型、复杂、多中心、前瞻性 ASD 队列进行 Ames-ISSG/ESSG 分类的验证和扩展。

方法

我们分析了前瞻性多中心研究中 563 例 ASD 患者的训练队列和回顾性单中心/外科医生队列中 242 例 ASD 患者的验证队列(具有完整的 2 年患者报告结果[PRO]和临床/放射学随访)。使用 k-均值聚类,一种机器学习算法,我们根据基线 PRO、埃德蒙顿脆弱性、年龄、手术史和整体健康状况对患者进行聚类。使用卡方检验和 ANOVA 进行两两比较,评估使用训练队列确定的聚类之间的基线差异。为了评估分类系统辨别术后轨迹的能力,第二个机器学习算法将单中心/外科医生患者分配到相同的 4 个聚类中,我们比较了聚类的 2 年 PRO 和临床结果。

结论

机器学习聚类发现了四个不同的 ASD 患者定性表型,这些表型由他们在出现时的年龄、脆弱性、身体功能和心理健康决定,主要决定了他们在手术后改善 PRO 的能力。这再次证实,在向 ASD 患者提供手术预期结果的咨询时,必须评估这些定性指标,除了放射学变量之外。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验