Suppr超能文献

普通玻璃和超稳定玻璃的低频振动态密度

Low-frequency vibrational density of states of ordinary and ultra-stable glasses.

作者信息

Xu Ding, Zhang Shiyun, Tong Hua, Wang Lijin, Xu Ning

机构信息

Hefei National Research Center for Physical Sciences at the Microscale and CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, 230026, P. R. China.

Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.

出版信息

Nat Commun. 2024 Feb 16;15(1):1424. doi: 10.1038/s41467-024-45671-8.

Abstract

A remarkable feature of disordered solids distinct from crystals is the violation of the Debye scaling law of the low-frequency vibrational density of states. Because the low-frequency vibration is responsible for many properties of solids, it is crucial to elucidate it for disordered solids. Numerous recent studies have suggested power-law scalings of the low-frequency vibrational density of states, but the scaling exponent is currently under intensive debate. Here, by classifying disordered solids into stable and unstable ones, we find two distinct and robust scaling exponents for non-phononic modes at low frequencies. Using the competition of these two scalings, we clarify the variation of the scaling exponent and hence reconcile the debate. Via the study of both ordinary and ultra-stable glasses, our work reveals a comprehensive picture of the low-frequency vibration of disordered solids and sheds light on the low-frequency vibrational features of ultra-stable glasses on approaching the ideal glass.

摘要

与晶体不同,无序固体的一个显著特征是违反了低频振动态密度的德拜标度律。由于低频振动决定了固体的许多性质,因此阐明无序固体的低频振动至关重要。最近的大量研究表明低频振动态密度存在幂律标度,但目前标度指数仍存在激烈争论。在这里,通过将无序固体分为稳定和不稳定两类,我们发现低频非声子模式有两个不同且稳健的标度指数。利用这两种标度的竞争关系,我们阐明了标度指数的变化,从而调和了这一争论。通过对普通玻璃和超稳定玻璃的研究,我们的工作揭示了无序固体低频振动的全貌,并揭示了超稳定玻璃接近理想玻璃时的低频振动特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac00/11258317/4f9f43447ae9/41467_2024_45671_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验