Suppr超能文献

用于椭圆曲线离散对数的含噪声量子比特量子计算的资源分析与改进

Resource analysis and modifications of quantum computing with noisy qubits for elliptic curve discrete logarithms.

作者信息

Ha Jinyoung, Lee Jonghyun, Heo Jun

机构信息

School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea.

出版信息

Sci Rep. 2024 Feb 16;14(1):3927. doi: 10.1038/s41598-024-54434-w.

Abstract

We estimate the number of physical qubits and execution time by decomposing an implementation of Shor's algorithm for elliptic curve discrete logarithms into universal gate units at the logical level when surface codes are used. We herein also present modified quantum circuits for elliptic curve discrete logarithms and compare our results with those of the original quantum circuit implementations at the physical level. Through the analysis, we show that the use of more logical qubits in quantum algorithms does not always lead to the use of more physical qubits. We assumed using rotated surface code and logical qubits with all-to-all connectivity. The number of physical qubits and execution time are expressed in terms of bit length, physical gate error rate, and probability of algorithm failure. In addition, we compare our results with the number of physical qubits and execution time of Shor's factoring algorithm to assess the risk of attack by quantum computers in RSA and elliptic curve cryptography.

摘要

当使用表面码时,我们通过在逻辑层面将用于椭圆曲线离散对数的肖尔算法实现分解为通用门单元,来估计物理量子比特的数量和执行时间。我们在此还展示了用于椭圆曲线离散对数的改进量子电路,并在物理层面将我们的结果与原始量子电路实现的结果进行比较。通过分析,我们表明在量子算法中使用更多的逻辑量子比特并不总是会导致使用更多的物理量子比特。我们假设使用旋转表面码和具有全对全连接性的逻辑量子比特。物理量子比特的数量和执行时间用比特长度、物理门错误率和算法失败概率来表示。此外,我们将我们的结果与肖尔因式分解算法的物理量子比特数量和执行时间进行比较,以评估量子计算机在RSA和椭圆曲线密码学中进行攻击的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d888/10873342/90111d6cd649/41598_2024_54434_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验