Suppr超能文献

超图上的渗流理论。

Theory of percolation on hypergraphs.

作者信息

Bianconi Ginestra, Dorogovtsev Sergey N

机构信息

School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.

Alan Turing Institute, 96 Euston Road, London NW1 2DB, United Kingdom.

出版信息

Phys Rev E. 2024 Jan;109(1-1):014306. doi: 10.1103/PhysRevE.109.014306.

Abstract

Hypergraphs capture the higher-order interactions in complex systems and always admit a factor graph representation, consisting of a bipartite network of nodes and hyperedges. As hypegraphs are ubiquitous, investigating hypergraph robustness is a problem of major research interest. In the literature the robustness of hypergraphs so far only has been treated adopting factor-graph percolation, which describes well higher-order interactions which remain functional even after the removal of one of more of their nodes. This approach, however, fall short to describe situations in which higher-order interactions fail when any one of their nodes is removed, this latter scenario applying, for instance, to supply chains, catalytic networks, protein-interaction networks, networks of chemical reactions, etc. Here we show that in these cases the correct process to investigate is hypergraph percolation, with is distinct from factor graph percolation. We build a message-passing theory of hypergraph percolation, and we investigate its critical behavior using generating function formalism supported by Monte Carlo simulations on random graph and real data. Notably, we show that the node percolation threshold on hypergraphs exceeds node percolation threshold on factor graphs. Furthermore we show that differently from what happens in ordinary graphs, on hypergraphs the node percolation threshold and hyperedge percolation threshold do not coincide, with the node percolation threshold exceeding the hyperedge percolation threshold. These results demonstrate that any fat-tailed cardinality distribution of hyperedges cannot lead to the hyper-resilience phenomenon in hypergraphs in contrast to their factor graphs, where the divergent second moment of a cardinality distribution guarantees zero percolation threshold.

摘要

超图捕捉复杂系统中的高阶相互作用,并且总是允许一种因子图表示,它由节点和超边的二分网络组成。由于超图无处不在,研究超图的鲁棒性是一个具有重大研究意义的问题。在文献中,到目前为止超图的鲁棒性仅通过因子图渗流来处理,因子图渗流很好地描述了即使在移除一个或多个节点后仍保持功能的高阶相互作用。然而,这种方法不足以描述当任何一个节点被移除时高阶相互作用失效的情况,后一种情况例如适用于供应链、催化网络、蛋白质相互作用网络、化学反应网络等。在这里我们表明,在这些情况下,正确的研究过程是超图渗流,它与因子图渗流不同。我们构建了超图渗流的消息传递理论,并使用随机图和真实数据上的蒙特卡罗模拟支持的生成函数形式来研究其临界行为。值得注意的是,我们表明超图上的节点渗流阈值超过因子图上的节点渗流阈值。此外,我们表明与普通图中发生的情况不同,在超图上节点渗流阈值和超边渗流阈值不重合,节点渗流阈值超过超边渗流阈值。这些结果表明,与因子图不同,超图中任何超边的肥尾基数分布都不会导致超弹性现象,在因子图中,基数分布的发散二阶矩保证了零渗流阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验