Dantus Marcos
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States.
Acc Chem Res. 2024 Mar 19;57(6):845-854. doi: 10.1021/acs.accounts.3c00713. Epub 2024 Feb 17.
ConspectusMass spectrometry is a powerful analytical method capable of identifying compounds given a minute amount of material. The fragmentation pattern that results following molecular activation serves as a fingerprint that can be matched to a database compound for identification. Over the past half century, studies have addressed and, in many cases, named the chemical reactions that lead to some of the principal fragment ions. Theories have been developed to predict the observed fragmentation patterns, many of which assume that energy redistributes prior to dissociation. However, the existence of rearrangements and nonergodic processes complicates the prediction of fragmentation patterns and the identification of compounds that have yet to be entered into a curated database. To date, very few studies have addressed the time-dependent nature of the fragmentation of radical cations and, in particular, processes occurring with picosecond or shorter time scales where one expects to find nonergodic reactions.This Account focuses on a novel approach that enables tracking of molecular fragmentation in electron-ionization mass spectrometry with ultrafast time resolution. The two challenges that have prevented the time-resolved studies following electron ionization are the random impact parameter and moment of ionization of each molecule. In addition, medium-sized molecules can produce fragmentation patterns with tens if not hundreds of product ions. Spectroscopically interrogating all of these ions as a function of time is another major challenge. We describe strong field disruptive probing, a method that ionizes molecules on a femtosecond time scale and allows us to track in time the formation of all fragment ions simultaneously.Molecular fragmentation following ionization can occur on a very wide range of time scales. Metastable ions can survive from nanoseconds to microseconds; reactions that depend on vibrational energy redistribution can take picoseconds to nanoseconds; and direct dissociation processes and some rearrangements can take place in femtoseconds to picoseconds. All of these processes depend on the dynamics that occur during attoseconds and femtoseconds following the ionization process. Following a discussion of these time scales, we provide three examples of fragmentations that have been studied with femtosecond time resolution. Each of these examples include unforeseen reaction dynamics that involve a nonergodic process, highlighting the importance of time resolution in mass spectrometry. Finally, we explore future challenges and unresolved questions in mass spectrometry and, more broadly, in the domain of electron-initiated chemical reactions.
概述
质谱分析法是一种强大的分析方法,能够在仅使用微量材料的情况下识别化合物。分子活化后产生的碎片模式可作为一种指纹,与数据库中的化合物进行匹配以实现识别。在过去的半个世纪里,研究已经探讨了并且在许多情况下命名了导致一些主要碎片离子的化学反应。人们已经发展出各种理论来预测观察到的碎片模式,其中许多理论假设能量在解离之前会重新分布。然而,重排和非遍历过程的存在使碎片模式的预测以及尚未录入精心策划数据库的化合物的识别变得复杂。迄今为止,很少有研究探讨自由基阳离子碎片形成的时间依赖性,特别是皮秒或更短时间尺度上发生的过程,在这个时间尺度上人们预期会发现非遍历反应。
本综述聚焦于一种新颖的方法,该方法能够以超快的时间分辨率跟踪电子电离质谱中的分子碎片化过程。阻碍电子电离后进行时间分辨研究的两个挑战是每个分子的随机碰撞参数和电离时刻。此外,中等大小的分子可以产生包含数十甚至数百个产物离子的碎片模式。将所有这些离子作为时间的函数进行光谱询问是另一个主要挑战。我们描述了强场破坏探测法,这是一种在飞秒时间尺度上使分子电离并允许我们同时及时跟踪所有碎片离子形成的方法。
电离后的分子碎片化可以在非常广泛的时间尺度上发生。亚稳离子可以从纳秒存活到微秒;依赖于振动能量重新分布的反应可能需要皮秒到纳秒;而直接解离过程和一些重排可以在飞秒到皮秒内发生。所有这些过程都取决于电离过程后阿秒和飞秒期间发生的动力学。在讨论了这些时间尺度之后,我们提供了三个已用飞秒时间分辨率研究的碎片化实例。这些实例中的每一个都包括涉及非遍历过程的意外反应动力学,突出了时间分辨率在质谱分析中的重要性。最后,我们探讨了质谱分析以及更广泛地在电子引发化学反应领域未来面临的挑战和未解决的问题。