Kane Margaret, Bhandari Churna, Holtz Megan E, Balakrishnan Purnima P, Grutter Alexander J, Fitzsimmons Michael, Yang Chao-Yao, Satpathy Sashi, Paudyal Durga, Suzuki Yuri
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States.
Nano Lett. 2024 Feb 28;24(8):2567-2573. doi: 10.1021/acs.nanolett.3c04623. Epub 2024 Feb 17.
The boundary between CaRuO and CaMnO is an ideal test bed for emergent magnetic ground states stabilized through interfacial electron interactions. In this system, nominally antiferromagnetic and paramagnetic materials combine to yield interfacial ferromagnetism in CaMnO due to electron leakage across the interface. In this work, we show that the crystal symmetry at the surface is a critical factor determining the nature of the interfacial interactions. Specifically, by growing CaRuO/CaMnO heterostructures along the (111) instead of the (001) crystallographic axis, we achieve a 3-fold enhancement of the magnetization and involve the CaRuO layers in the ferromagnetism, which now spans both constituent materials. The stabilization of a net magnetic moment in CaRuO through strain effects has been long-sought but never consistently achieved, and our observations demonstrate the importance of interface engineering in the development of new functional heterostructures.
CaRuO 和 CaMnO 之间的边界是通过界面电子相互作用稳定出现的磁基态的理想测试平台。在这个系统中,名义上的反铁磁和顺磁材料相结合,由于电子通过界面泄漏,在 CaMnO 中产生界面铁磁性。在这项工作中,我们表明表面的晶体对称性是决定界面相互作用性质的关键因素。具体来说,通过沿 (111) 而非 (001) 晶轴生长 CaRuO/CaMnO 异质结构,我们实现了磁化强度提高 3 倍,并使 CaRuO 层参与到铁磁性中,现在铁磁性跨越了两种组成材料。通过应变效应在 CaRuO 中稳定净磁矩一直是人们长期追求但从未持续实现的目标,我们的观察结果证明了界面工程在开发新型功能异质结构中的重要性。