Suppr超能文献

基于机器学习对认知功能正常个体中的轻度认知障碍进行预测。

Machine learning-based prediction of mild cognitive impairment among individuals with normal cognitive function.

作者信息

Zhu Xia Wei, Liu Si Bo, Ji Chen Hua, Liu Jin Jie, Huang Chao

机构信息

School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China.

Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, China.

出版信息

Front Neurol. 2024 Feb 2;15:1352423. doi: 10.3389/fneur.2024.1352423. eCollection 2024.

Abstract

BACKGROUND

Previous studies mainly focused on risk factors in patients with mild cognitive impairment (MCI) or dementia. The aim of the study was to provide basis for preventing MCI in cognitive normal populations.

METHODS

The data came from a longitudinal retrospective study involving individuals with brain magnetic resonance imaging scans, clinical visits, and cognitive assessment with interval of more than 3 years. Multiple machine-learning technologies, including random forest, support vector machine, logistic regression, eXtreme Gradient Boosting, and naïve Bayes, were used to establish a prediction model of a future risk of MCI through a combination of clinical and image variables.

RESULTS

Among these machine learning models; eXtreme Gradient Boosting (XGB) was the best classification model. The classification accuracy of clinical variables was 65.90%, of image variables was 79.54%, of a combination of clinical and image variables was 94.32%. The best result of the combination was an accuracy of 94.32%, a precision of 96.21%, and a recall of 93.08%. XGB with a combination of clinical and image variables had a potential prospect for the risk prediction of MCI. From clinical perspective, the degree of white matter hyperintensity (WMH), especially in the frontal lobe, and the control of systolic blood pressure (SBP) were the most important risk factor for the development of MCI.

CONCLUSION

The best MCI classification results came from the XGB model with a combination of both clinical and imaging variables. The degree of WMH in the frontal lobe and SBP control were the most important variables in predicting MCI.

摘要

背景

以往研究主要聚焦于轻度认知障碍(MCI)或痴呆患者的风险因素。本研究旨在为认知正常人群预防MCI提供依据。

方法

数据来自一项纵向回顾性研究,研究对象接受了脑磁共振成像扫描、临床检查以及间隔超过3年的认知评估。使用包括随机森林、支持向量机、逻辑回归、极端梯度提升和朴素贝叶斯在内的多种机器学习技术,通过结合临床和影像变量建立MCI未来风险的预测模型。

结果

在这些机器学习模型中,极端梯度提升(XGB)是最佳分类模型。临床变量的分类准确率为65.90%,影像变量为79.54%,临床和影像变量组合为94.32%。组合的最佳结果是准确率94.32%、精确率96.21%和召回率93.08%。结合临床和影像变量的XGB在MCI风险预测方面具有潜在前景。从临床角度来看,白质高信号(WMH)程度,尤其是额叶的白质高信号程度,以及收缩压(SBP)的控制是MCI发生的最重要风险因素。

结论

最佳的MCI分类结果来自结合临床和影像变量的XGB模型。额叶WMH程度和SBP控制是预测MCI的最重要变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a799/10870793/eb11745787bd/fneur-15-1352423-g001.jpg

相似文献

1
Machine learning-based prediction of mild cognitive impairment among individuals with normal cognitive function.
Front Neurol. 2024 Feb 2;15:1352423. doi: 10.3389/fneur.2024.1352423. eCollection 2024.
3
Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease.
Parkinsonism Relat Disord. 2022 Jan;94:104-110. doi: 10.1016/j.parkreldis.2021.12.004. Epub 2021 Dec 9.
4
Retinal Imaging Techniques Based on Machine Learning Models in Recognition and Prediction of Mild Cognitive Impairment.
Neuropsychiatr Dis Treat. 2021 Nov 6;17:3267-3281. doi: 10.2147/NDT.S333833. eCollection 2021.
5
Development and validation of an interpretable machine learning model-Predicting mild cognitive impairment in a high-risk stroke population.
Front Aging Neurosci. 2023 Jun 15;15:1180351. doi: 10.3389/fnagi.2023.1180351. eCollection 2023.
7
Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches.
J Psychopharmacol. 2021 Mar;35(3):265-272. doi: 10.1177/0269881120972331. Epub 2021 Feb 15.

引用本文的文献

本文引用的文献

1
Optimal systolic and diastolic blood pressure threshold that associated with lower risk of white matter hyperintensity progression.
Front Aging Neurosci. 2023 Oct 19;15:1254463. doi: 10.3389/fnagi.2023.1254463. eCollection 2023.
2
White Matter Hyperintensity Trajectories in Patients With Progressive and Stable Mild Cognitive Impairment.
Neurology. 2023 Aug 22;101(8):e815-e824. doi: 10.1212/WNL.0000000000207514. Epub 2023 Jul 5.
5
Prediction of the progression from mild cognitive impairment to Alzheimer's disease using a radiomics-integrated model.
Ther Adv Neurol Disord. 2021 Jul 15;14:17562864211029551. doi: 10.1177/17562864211029551. eCollection 2021.
6
White matter hyperintensities and cognition across different Alzheimer's biomarker profiles.
J Am Geriatr Soc. 2021 Jul;69(7):1906-1915. doi: 10.1111/jgs.17173. Epub 2021 Apr 23.
8
White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies.
Neurosci Biobehav Rev. 2021 Jan;120:16-27. doi: 10.1016/j.neubiorev.2020.11.007. Epub 2020 Nov 11.
9
Deep learning based mild cognitive impairment diagnosis using structure MR images.
Neurosci Lett. 2020 Jun 21;730:134971. doi: 10.1016/j.neulet.2020.134971. Epub 2020 May 4.
10
Classification of Early and Late Mild Cognitive Impairment Using Functional Brain Network of Resting-State fMRI.
Front Psychiatry. 2019 Aug 27;10:572. doi: 10.3389/fpsyt.2019.00572. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验