Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University 1 Yonseidaegil, Wonju-si, Gangwon-do 26493, Republic of Korea.
Int J Biol Macromol. 2024 Apr;263(Pt 1):130232. doi: 10.1016/j.ijbiomac.2024.130232. Epub 2024 Feb 17.
Active packaging relies on controlled release of antimicrobials for food protection; however, uncontrolled migration due to environmental factors poses safety and functionality challenges. This study investigated the stability of zinc oxide nanoparticle (ZnONP) in poly(butylene-adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) biopolymer film for active food packaging applications. While incorporating ZnONP significantly enhanced the properties and active functionalities (UV-light blocking, antimicrobial activity) of PBAT/TPS film, food simulants posed significant stability challenges. Notably, exposure to 3 % acetic acid (acidic food simulant) triggered complete detachment and dissolution of ZnONPs from the film surface, leading to pore formation and subsequent internal ZnO dissolution. This resulted in dramatic alterations to the bionanocomposite films, including increased opacity, water vapor permeability, and decreased thermal stability, mechanical properties, and active functionalities. In contrast, 10 % ethanol (aqueous food simulant) had minimal impact, suggesting higher ZnO stability in neutral environments. Importantly, ZnO migration analysis revealed thresholds for safe application: 1 % ZnONP for acidic food contact and up to 5 % for aqueous foodstuffs. These findings highlight the critical role of environmental factors in ZnONP stability and emphasize the need for strategic optimization of ZnO content for achieving both functionality and safety in active biopolymer packaging.
活性包装依赖于抗菌剂的控制释放来实现食品保护;然而,由于环境因素导致的不受控制的迁移会带来安全和功能方面的挑战。本研究考察了氧化锌纳米粒子(ZnONP)在聚丁二酸丁二醇酯/热塑性淀粉(PBAT/TPS)生物聚合物薄膜中的稳定性,以应用于活性食品包装。尽管将 ZnONP 掺入其中显著提高了 PBAT/TPS 薄膜的性能和活性功能(阻挡紫外线、抗菌活性),但食品模拟物却带来了显著的稳定性挑战。值得注意的是,暴露于 3%乙酸(酸性食品模拟物)会导致 ZnONPs 从薄膜表面完全分离和溶解,从而形成孔,并导致内部 ZnO 溶解。这导致了生物纳米复合材料薄膜的剧烈变化,包括不透明度增加、水蒸气透过率增加以及热稳定性、机械性能和活性功能降低。相比之下,10%乙醇(水性食品模拟物)的影响较小,表明 ZnO 在中性环境中更稳定。重要的是,ZnO 迁移分析揭示了安全应用的阈值:用于酸性食品接触的 1%ZnONP,以及用于水性食品的高达 5%ZnONP。这些发现强调了环境因素在 ZnONP 稳定性中的关键作用,并强调需要对 ZnO 含量进行策略优化,以在活性生物聚合物包装中实现功能和安全性。