Tao Zihan, Shen Bitao, Li Wencan, Xing Luwen, Wang Haoyu, Wu Yichen, Tao Yuansheng, Zhou Yan, He Yandong, Peng Chao, Shu Haowen, Wang Xingjun
State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, 100871, China.
College of Engineering, Peking University, Beijing, 100871, China.
Light Sci Appl. 2024 Feb 20;13(1):51. doi: 10.1038/s41377-024-01399-0.
Harnessing optical supermode interaction to construct artificial photonic molecules has uncovered a series of fundamental optical phenomena analogous to atomic physics. Previously, the distinct energy levels and interactions in such two-level systems were provided by coupled microresonators. The reconfigurability is limited, as they often require delicate external field stimuli or mechanically altering the geometric factors. These highly specific approaches also limit potential applications. Here, we propose a versatile on-chip photonic molecule in a multimode microring, utilizing a flexible regulation methodology to dynamically control the existence and interaction strength of spatial modes. The transition between single/multi-mode states enables the "switched-off/on" functionality of the photonic molecule, supporting wider generalized applications scenarios. In particular, "switched-on" state shows flexible and multidimensional mode splitting control in aspects of both coupling strength and phase difference, equivalent to the a.c. and d.c. Stark effect. "Switched-off" state allows for perfect low-loss single-mode transition (Q ~ 10 million) under an ultra-compact bend size (FSR ~ 115 GHz) in a foundry-based silicon microring. It breaks the stereotyped image of the FSR-Q factor trade-off, enabling ultra-wideband and high-resolution millimeter-wave photonic operations. Our demonstration provides a flexible and portable solution for the integrated photonic molecule system, extending its research scope from fundamental physics to real-world applications such as nonlinear optical signal processing and sixth-generation wireless communication.
利用光学超模相互作用构建人工光子分子揭示了一系列类似于原子物理学的基本光学现象。此前,此类二能级系统中不同的能级和相互作用由耦合微谐振器提供。其可重构性有限,因为它们通常需要精确的外部场刺激或机械改变几何因素。这些高度特定的方法也限制了潜在应用。在此,我们提出一种多模微环中的通用片上光子分子,利用灵活的调控方法动态控制空间模式的存在和相互作用强度。单/多模状态之间的转变实现了光子分子的“关/开”功能,支持更广泛的通用应用场景。特别是,“开”状态在耦合强度和相位差方面展示了灵活且多维的模式分裂控制,等同于交流和直流斯塔克效应。“关”状态允许在基于代工的硅微环中,在超紧凑弯曲尺寸(自由光谱范围115 GHz)下实现完美的低损耗单模转变(品质因数1000万)。它打破了自由光谱范围 - 品质因数权衡的固有观念,实现超宽带和高分辨率毫米波光子操作。我们的演示为集成光子分子系统提供了一种灵活且便携的解决方案,将其研究范围从基础物理扩展到诸如非线性光信号处理和第六代无线通信等实际应用。