Qian An, Han Xin, Liu Qiaona, Fan Minwei, Ye Lei, Pu Xin, Chen Ying, Liu Jichang, Sun Hui, Zhao Jigang, Ling Hao, Wang Rongjie, Li Jiangbing, Jia Xin
School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237.
SINOPEC Shanghai Engineering Co., Ltd.(SSEC), Shanghai, 200120, China.
ChemSusChem. 2024 Mar 22;17(6):e202301538. doi: 10.1002/cssc.202301538. Epub 2024 Feb 20.
Construction of S-scheme heterojunction offers a promising way to enhance the photocatalytic performance of photocatalysts for converting solar energy into chemical energy. However, the photocatalytic H production in pure water without sacrificial agents is still a challenge. Herein, the IEF-11 with the best photocatalytic H production performance in MOFs and suitable band structure was selected and firstly constructed with g-CN to obtain a S-scheme heterojunction for photocatalytic H production from pure water. As a result, the novel IEF-11/g-CN heterojunction photocatalysts exhibited significantly improved photocatalytic H production performance in pure water without any sacrificial agent, with a rate of 576 μmol/g/h, which is about 8 times than that of g-CN and 23 times of IEF-11. The novel IEF-11/g-CN photocatalysts also had a photocatalytic H production rate of up to 92 μmol/g/h under visible light and a good photocatalytic stability. The improved performance can be attributed to the efficient separation of photogenerated charge carriers, faster charge transfer efficiency and longer photogenerated carrier lifetimes, which comes from the forming of S-scheme heterojunction in the IEF-11/g-CN photocatalyst. This work is a promising guideline for obtaining MOF-based or g-CN-based photocatalysts with great photocatalytic water splitting performance.
构建S型异质结为提高光催化剂将太阳能转化为化学能的光催化性能提供了一条很有前景的途径。然而,在没有牺牲剂的纯水中进行光催化产氢仍然是一个挑战。在此,选择了在金属有机框架材料(MOFs)中产氢性能最佳且具有合适能带结构的IEF-11,并首先将其与石墨相氮化碳(g-CN)构建成用于从纯水中光催化产氢的S型异质结。结果,新型IEF-11/g-CN异质结光催化剂在没有任何牺牲剂的纯水中表现出显著提高的光催化产氢性能,产氢速率为576 μmol/g/h,约为g-CN的8倍和IEF-11的23倍。新型IEF-11/g-CN光催化剂在可见光下的光催化产氢速率也高达92 μmol/g/h,并且具有良好的光催化稳定性。性能的提高可归因于光生电荷载流子的有效分离、更快的电荷转移效率和更长的光生载流子寿命,这源于IEF-11/g-CN光催化剂中形成了S型异质结。这项工作为获得具有优异光催化水分解性能的基于MOF或基于g-CN的光催化剂提供了一个很有前景的指导方针。