Suppr超能文献

用于从污水中高效去除微塑料的多金属氧酸盐纳米团簇注入型三重互穿聚合物网络水凝胶:检测、光降解及升级再造

Polyoxometalate nanocluster-infused triple IPN hydrogels for excellent microplastic removal from contaminated water: detection, photodegradation, and upcycling.

作者信息

Dutta Soumi, Misra Ashok, Bose Suryasarathi

机构信息

Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India.

出版信息

Nanoscale. 2024 Mar 7;16(10):5188-5205. doi: 10.1039/d3nr06115a.

Abstract

Microplastic (MP) pollution pervades global ecosystems, originating from improper plastic disposal and fragmentation due to factors like hydrolysis and biodegradation. These minute particles, less than 5 mm in size, have become omnipresent, impacting terrestrial, freshwater, and marine environments worldwide. Their ubiquity poses severe threats to marine life by causing physical harm and potentially transferring toxins through the food chain. Addressing this environmental crisis necessitates a sustainable strategy. Our proposed solution involves a highly efficient copper substitute polyoxometalate (Cu-POM) nanocluster infused triple interpenetrating polymer network (IPN) hydrogel, comprising chitosan (CS), polyvinyl alcohol (PVA), and polyaniline (PANI) (referred to as pGel@IPN) for mitigating MP contamination from water. This 3D IPN architecture, incorporating nanoclusters, also enhances the hydrogel's photodegradation capabilities. Our scalable approach offers a sustainable strategy to combat MPs in water bodies, as demostrated by the adsorption behaviors on the hydrogel matrix under varying conditions, simulating real-world scenarios. Evaluations of physicochemical properties, mechanical strength, and thermal behavior underscore the hydrogel's robustness and stability. Detecting minute MP particles remains challenging, prompting us to label MPs with Nile red for fluorescence microscopic analysis of their concentration and adsorption on the hydrogel. The catalytic properties of POM within the hydrogel facilitate UV-induced MP degradation, highlighting a sustainable solution. Our detailed kinetics and isotherm studies revealed pseudo-first-order and Langmuir models as fitting descriptors for MP adsorption, exhibiting a high maximum adsorption capacity (). Notably, pGel@IPN achieved ∼95% and ∼93% removal efficiencies for polyvinyl chloride (PVC) and polypropylene (PP) MPs at pH ∼ 6.5, respectively, also demonstrating reusability for up to 5 cycles. Post-end-of-life, the spent adsorbent was efficiently upcycled into carbon nanomaterials, effectively removing the heavy metal Cr(VI), exemplifying circular economy principles. Our prepared hydrogel emerges as a potent solution for MP removal from water, promising effective mitigation of the emerging pollutants of MPs while ensuring sustainable environmental practices.

摘要

微塑料(MP)污染遍及全球生态系统,其源于塑料处置不当以及水解和生物降解等因素导致的塑料破碎。这些尺寸小于5毫米的微小颗粒已无处不在,影响着全球的陆地、淡水和海洋环境。它们的普遍存在通过造成物理伤害并可能通过食物链传递毒素,对海洋生物构成严重威胁。应对这一环境危机需要一种可持续的策略。我们提出的解决方案涉及一种高效的铜替代多金属氧酸盐(Cu-POM)纳米簇注入的三重互穿聚合物网络(IPN)水凝胶,该水凝胶由壳聚糖(CS)、聚乙烯醇(PVA)和聚苯胺(PANI)组成(称为pGel@IPN),用于减轻水中的MP污染。这种包含纳米簇的3D IPN结构还增强了水凝胶的光降解能力。我们的可扩展方法提供了一种应对水体中微塑料的可持续策略,如在不同条件下对水凝胶基质的吸附行为所示,模拟了现实世界的场景。对物理化学性质、机械强度和热行为的评估强调了水凝胶的坚固性和稳定性。检测微小的MP颗粒仍然具有挑战性,这促使我们用尼罗红标记MP,以便通过荧光显微镜分析其浓度及其在水凝胶上的吸附情况。水凝胶中POM的催化特性促进了紫外线诱导的MP降解,突出了一种可持续的解决方案。我们详细的动力学和等温线研究表明,伪一级和朗缪尔模型是MP吸附的合适描述符,表现出较高的最大吸附容量()。值得注意的是,pGel@IPN在pH约为6.5时,对聚氯乙烯(PVC)和聚丙烯(PP)微塑料的去除效率分别达到约95%和约93%,还证明了其可重复使用多达5个循环。在使用寿命结束后,用过的吸附剂被有效地升级循环为碳纳米材料,有效地去除了重金属Cr(VI),体现了循环经济原则。我们制备的水凝胶成为从水中去除微塑料的有效解决方案,有望有效减轻微塑料这一新兴污染物的影响,同时确保可持续的环境实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验