Department of Criminal Justice and Legal Studies, University of Mississippi.
University of Pennsylvania Carey Law School.
Psychol Sci. 2024 Mar;35(3):277-287. doi: 10.1177/09567976241229028. Epub 2024 Feb 20.
After an eyewitness completes a lineup, officers are advised to ask witnesses how confident they are in their identification. Although researchers in the lab typically study eyewitness confidence numerically, confidence in the field is primarily gathered verbally. In the current study, we used a natural language-processing approach to develop an automated model to classify verbal eyewitness confidence statements. Across a variety of stimulus materials and witnessing conditions, our model correctly classified adult witnesses' ( = 4,541) level of confidence (i.e., high, medium, or low) 71% of the time. Confidence-accuracy calibration curves demonstrate that the model's confidence classification performs similarly in predicting eyewitness accuracy compared to witnesses' self-reported numeric confidence. Our model also furnishes a new metric, , that measures the vagueness of witnesses' confidence statements and provides independent information about eyewitness accuracy. These results have implications for how empirical scientists collect confidence data and how police interpret eyewitness confidence statements.
目击者完成列队辨认后,警方人员应询问目击者对自己辨认结果的自信程度。尽管实验室的研究人员通常会对目击者的信心进行数值研究,但在实际情况下,信心主要是通过口头方式收集的。在当前的研究中,我们使用自然语言处理方法开发了一种自动模型,以对口头目击者信心陈述进行分类。在各种刺激材料和目击条件下,我们的模型正确地将成年目击者(=4541)的信心水平(即高、中或低)分类的准确率为 71%。信心准确性校准曲线表明,与目击者自我报告的数值信心相比,该模型的信心分类在预测目击者准确性方面的表现相似。我们的模型还提供了一个新的指标,即 ,用于衡量目击者信心陈述的模糊性,并提供有关目击者准确性的独立信息。这些结果对实证科学家如何收集信心数据以及警方如何解释目击者信心陈述具有重要意义。