Liu Hanyu, Li RuiXue, Yang Ting, Wang Juntao
College of Science, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China.
Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, People's Republic of China.
Nanotechnology. 2024 Mar 7;35(21). doi: 10.1088/1361-6528/ad2b49.
Lithium-sulfur (Li-S) batteries exhibit a huge potential in energy storage devices for the thrilling theoretical energy density (2600 Wh kg). Nevertheless, the serious shuttle effect rooted in polysulfides and retardative hysteresis reaction kinetics results in inferior cycling and rate performances of Li-S batteries, impeding commercial applications. In order to further promote the energy storage abilities of Li-S batteries, a unique binder-free sulfur carrier consisting of SnS-modified multi-hole carbon nanofibers (SnS-MHCNFs) has been constructed, where MHCNFs can offer abundant space to accommodate high-level sulfur and SnScan promote the adsorption and catalyst capability of polysulfides, synergistically promoting the lithium-ion storage performances of Li-S batteries. After sulfur loading (SnS-MHCNFs@S), the material was directly applied as a cathode electrode of the Li-S battery. The SnS-MHCNFs@S electrode maintained a good discharge capacity of 921 mAh gafter 150 cycles when the current density was 0.1 C (1 C = 1675 mA g), outdistancing the MHCNFs@S (629 mAh g) and CNFs@S (249 mAh g) electrodes. Meanwhile, the SnS-MHCNFs@S electrode still exhibited a discharge capacity of 444 mAh gat 2 C. The good performance of SnS-MHCNFs@S electrode indicates that combining multihole structure designation and polar material modification are highly effective methods to boost the performances of Li-S batteries.
锂硫(Li-S)电池在储能设备中展现出巨大潜力,其理论能量密度高达2600 Wh/kg,令人振奋。然而,多硫化物引发的严重穿梭效应以及迟缓的滞后反应动力学导致Li-S电池的循环性能和倍率性能较差,阻碍了其商业应用。为了进一步提升Li-S电池的储能能力,构建了一种独特的无粘结剂硫载体,它由SnS修饰的多孔碳纳米纤维(SnS-MHCNFs)组成,其中MHCNFs能够提供充足空间来容纳大量硫,而SnS可以促进多硫化物的吸附和催化能力,协同提升Li-S电池的锂离子存储性能。在负载硫之后(SnS-MHCNFs@S),该材料被直接用作Li-S电池的正极。当电流密度为0.1 C(1 C = 1675 mA/g)时,SnS-MHCNFs@S电极在150次循环后仍保持921 mAh/g的良好放电容量,超过了MHCNFs@S(629 mAh/g)和CNFs@S(249 mAh/g)电极。同时,SnS-MHCNFs@S电极在2 C时仍表现出444 mAh/g的放电容量。SnS-MHCNFs@S电极的良好性能表明,结合多孔结构设计和极性材料改性是提升Li-S电池性能的高效方法。