Rader Chris, Fritz Patrick W, Ashirov Timur, Coskun Ali, Weder Christoph
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
Department of Chemistry, University of Fribourg, Chemin de Musee 9, 1700 Fribourg, Switzerland.
Biomacromolecules. 2024 Mar 11;25(3):1637-1648. doi: 10.1021/acs.biomac.3c01196. Epub 2024 Feb 21.
Cellulose nanocrystals (CNCs) are bio-based, rod-like, high-aspect-ratio nanoparticles with high stiffness and strength and are widely used as a reinforcing nanofiller in polymer nanocomposites. However, due to hydrogen-bond formation between the large number of hydroxyl groups on their surface, CNCs are prone to aggregate, especially in nonpolar polymer matrices. One possibility to overcome this problem is to graft polymers from the CNCs' surfaces and to process the resulting "hairy nanoparticles" (HNPs) into one-component nanocomposites (OCNs) in which the polymer matrix and CNC filler are covalently connected. Here, we report OCNs based on HNPs that were synthesized by grafting gradient diblock copolymers onto CNCs via surface-initiated atom transfer radical polymerization. The inner block (toward the CNCs) is composed of poly(methyl acrylate) (PMA), and the outer block comprises a gradient copolymer rich in poly(methyl methacrylate) (PMMA). The OCNs based on such HNPs microphase separate into a rubbery poly(methyl acrylate) phase that dissipates mechanical energy and imparts toughness, a glassy PMMA phase that provides strength and stiffness, and well-dispersed CNCs that further reinforce the materials. This design afforded OCNs that display a considerably higher stiffness and strength than reference diblock copolymers without the CNCs. At the same time, the extensibility remains high and the toughness is increased up to 5-fold relative to the reference materials.
纤维素纳米晶体(CNCs)是一种基于生物的、棒状的、高纵横比的纳米颗粒,具有高刚度和强度,被广泛用作聚合物纳米复合材料中的增强纳米填料。然而,由于其表面大量羟基之间形成氢键,CNCs易于聚集,尤其是在非极性聚合物基体中。克服这一问题的一种可能性是在CNCs表面接枝聚合物,并将所得的“毛发状纳米颗粒”(HNPs)加工成聚合物基体和CNC填料共价连接的单组分纳米复合材料(OCNs)。在此,我们报道了基于HNPs的OCNs,其通过表面引发的原子转移自由基聚合将梯度二嵌段共聚物接枝到CNCs上合成。内嵌段(朝向CNCs)由聚(丙烯酸甲酯)(PMA)组成,外嵌段包含富含聚(甲基丙烯酸甲酯)(PMMA)的梯度共聚物。基于此类HNPs的OCNs发生微相分离,形成一个耗散机械能并赋予韧性的橡胶状聚(丙烯酸甲酯)相、一个提供强度和刚度的玻璃状PMMA相以及进一步增强材料的分散良好的CNCs。这种设计得到的OCNs显示出比不含CNCs的参比二嵌段共聚物显著更高的刚度和强度。同时,相对于参比材料,其延展性仍然很高,韧性提高了5倍。