Chen Ming, Zhao Ming-Yang, Liu Feng-Ming, Li Meng-Ting, Zhang Meng-Lei, Qian Xing, Yuan Zhong-Yong, Li Chun-Sheng, Wan Rong
College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.
Langmuir. 2024 Mar 5;40(9):4852-4859. doi: 10.1021/acs.langmuir.3c03742. Epub 2024 Feb 21.
Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiO@NCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g at 100 mA g, high rate capability of 484/467 mA h g at 5.0 A g, and good long-term cycling stability of 663/634 mA h g at 600th cycle at 1 A g, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e/Li transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs.
具有高理论容量、天然丰度、低成本和环境友好等优点的过渡金属氧化物,被视为锂离子电池(LIBs)颇具前景的阳极材料。然而,循环过程中严重的体积膨胀和较差的导电性限制了它们的循环稳定性和倍率性能。为解决这一问题,分别通过单晶Ni(II)-三唑配位框架和Ni(II)/三聚氰胺混合物的金属催化石墨化和氮化,以及随后在空气中的氧化,合成了嵌入NiO的N掺杂多孔碳纳米棒(NiO@NCNR)和纳米管(NiO@NCNT)。当用作LIBs的阳极材料时,NiO@NCNR和NiO@NCNT杂化物在100 mA g时表现出895/832 mA h g的良好容量,在5.0 A g时具有484/467 mA h g的高倍率性能,在1 A g的第600次循环时具有663/634 mA h g 的良好长期循环稳定性,这比NiO@炭黑(CB)对照样品(701、214和223 mA h g)要好得多。这些优异的电化学性能得益于NiO@NCNR和NiO@NCNT先进的纳米结构,该结构提供了长度可控的一维多孔碳纳米结构,以实现有效的电子/锂离子传输,提供了灵活的碳骨架用于空间限制,并形成了丰富的纳米腔,用于在充放电过程中缓冲应力和增强结构。合理的结构设计和合成可能为探索下一代LIBs的先进金属氧化物基阳极材料铺平道路。