Department of Endocrinology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China.
Department of Endocrinology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; Department of Endocrinology, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China.
J Ethnopharmacol. 2024 Jun 12;327:117931. doi: 10.1016/j.jep.2024.117931. Epub 2024 Feb 19.
Phytochemical compounds offer a distinctive edge in diabetes management, attributed to their multifaceted target mechanisms and minimal toxicological profiles. Epiberberine (EPI), an alkaloid derived from plants of the Rhizoma Coptidis, has been reported to have antidiabetic effects. However, the underlying molecular mechanism of EPI are not fully elucidated.
This study explored the anti-diabetic effects of EPI and the role of the NRF2/AMPK signaling pathway in improving insulin resistance.
We utilized two distinct models: in vivo, we employed mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet (HFD) and streptozotocin (STZ) to conduct a range of assessments including measuring physical parameters, conducting biochemical analyses, examining histopathology, and performing Western blot tests. In parallel, in vitro experiments were carried out using insulin resistance (IR)-HepG2 cells, through which we conducted a CCK8 assay, glucose uptake tests, Western blot analyses, and flow cytometry studies.
In the EPI-treated group of T2DM mice, there was a significant reduction in hyperglycemia, IR, and hyperlipidemia, accompanied by beneficial changes in the liver and pancreas, as well as enhanced glucose uptake in IR-HepG2 cells. Herein, our finding also provided evidence that EPI could increase the expression of GLUT4 and activated the IRS-1/PI3K/AKT insulin signaling pathway to improve IR in vitro and in vivo. Moreover, EPI alleviated oxidative stress by enhancing SOD and GPX-px activity, decreasing reactive oxygen species (ROS) and malondialdehyde (MDA) content, and promoting nuclear factor (erythroid-derived 2)-like 2 (NRF2), total NRF2, NAD(P)H-quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) expression in the liver tissue of T2DM mice and IR-HepG2 cells. Furthermore, EPI decreased oxidative stress and improved IR, but these benefits were nullified by siNRF2 transfection. In particular, AMP-activated protein kinase (AMPK) deficiency by short-hairpin RNA (shRNA) partially reversed the effects of EPI on nuclear transcription, oxidative stress, and IR of NRF2 in IR-HepG2 cells.
Taken together, EPI activated NRF2-dependent AMPK cascade to protect T2DM from oxidative stress, thereby alleviating IR.
植物化学化合物在糖尿病管理中具有独特的优势,这归因于它们多效性的靶机制和最小的毒理学特征。小檗碱(EPI)是一种从黄连根茎中提取的生物碱,已被报道具有抗糖尿病作用。然而,EPI 的潜在分子机制尚未完全阐明。
本研究旨在探讨 EPI 的抗糖尿病作用及其对改善胰岛素抵抗的 NRF2/AMPK 信号通路的作用。
我们使用了两种不同的模型:体内,我们使用高脂肪饮食(HFD)和链脲佐菌素(STZ)诱导的 2 型糖尿病(T2DM)小鼠进行了一系列评估,包括测量生理参数、进行生化分析、检查组织病理学和进行 Western blot 测试。同时,我们还在胰岛素抵抗(IR)-HepG2 细胞中进行了体外实验,通过 CCK8 测定、葡萄糖摄取试验、Western blot 分析和流式细胞术研究进行了实验。
在 T2DM 小鼠的 EPI 治疗组中,高血糖、IR 和高血脂得到了显著改善,同时肝脏和胰腺也得到了有益的改善,IR-HepG2 细胞中的葡萄糖摄取也得到了增强。在此基础上,我们的研究结果还提供了证据表明,EPI 可以通过增加 GLUT4 的表达和激活 IRS-1/PI3K/AKT 胰岛素信号通路来改善体内和体外的 IR。此外,EPI 通过增强 SOD 和 GPX-px 的活性、降低活性氧(ROS)和丙二醛(MDA)含量以及促进核因子(红系衍生 2)样 2(NRF2)、总 NRF2、NAD(P)H-醌氧化还原酶(NQO1)和血红素加氧酶-1(HO-1)的表达来减轻氧化应激。在 T2DM 小鼠和 IR-HepG2 细胞的肝组织中。此外,EPI 降低了氧化应激并改善了 IR,但这些益处在 siNRF2 转染后被消除。特别是,短发夹 RNA(shRNA)对 AMP 激活蛋白激酶(AMPK)的缺失部分逆转了 EPI 对 NRF2 核转录、氧化应激和 IR-HepG2 细胞中 IR 的影响。
综上所述,EPI 通过激活 NRF2 依赖性 AMPK 级联反应来保护 T2DM 免受氧化应激,从而缓解 IR。