School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
Environ Res. 2024 Jun 1;250:118519. doi: 10.1016/j.envres.2024.118519. Epub 2024 Feb 19.
The present study explores visible light-assisted photodegradation of ciprofloxacin hydrochloride (CIP) antibiotic as a promising solution to water pollution. The focus is on transforming the optical and electronic properties of BiOCl through the generation of oxygen vacancies (OVs) and the exposure of (110) facets, forming a robust S-scheme heterojunction with WS. The resultant OVs mediated composite with an optimal ratio of WS and BiOCl-OV (4-WS/BiOCl-OV) demonstrated remarkable efficiency (94.3%) in the visible light-assisted photodegradation of CIP antibiotic within 1.5 h. The CIP degradation using 4-WS/BiOCl-OV followed pseudo-first-order kinetics with the rate constant of 0.023 min, outperforming bare WS, BiOCl, and BiOCl-OV by 8, 6, and 4 times, respectively. Density functional theory (DFT) analysis aligned well with experimental results, providing insights into the structural arrangement and bandgap analysis of the photocatalysts. Liquid chromatography-mass spectrometry (LC-MS) analysis utilized for identifying potentially degraded products while scavenging experiments and electron paramagnetic resonance (EPR) spin trapping analysis elucidated the S-scheme charge transfer mechanism. This research contributes to advancing the design of oxygen vacancy-mediated S-scheme systems in the realm of photocatalysis, with potential implications for addressing water pollution concerns.
本研究探索了可见光辅助光降解盐酸环丙沙星(CIP)抗生素作为解决水污染的有前途的方法。重点是通过生成氧空位(OVs)和暴露(110)面来改变 BiOCl 的光学和电子特性,与 WS 形成坚固的 S 型异质结。结果表明,具有最佳 WS 和 BiOCl-OV 比例的 OVs 介导的复合材料(4-WS/BiOCl-OV)在 1.5 小时内实现了 CIP 抗生素在可见光辅助光降解中的高效性(94.3%)。使用 4-WS/BiOCl-OV 进行的 CIP 降解遵循准一级动力学,其速率常数为 0.023 min,分别比 bare WS、BiOCl 和 BiOCl-OV 提高了 8、6 和 4 倍。密度泛函理论(DFT)分析与实验结果吻合良好,提供了对光催化剂结构排列和能带隙分析的深入了解。液相色谱-质谱(LC-MS)分析用于鉴定潜在降解产物,而捕获实验和电子顺磁共振(EPR)自旋捕获分析阐明了 S 型电荷转移机制。这项研究有助于推进氧空位介导的 S 型体系在光催化领域的设计,为解决水污染问题提供了潜在的解决方案。