Ding Xinqiang
Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States.
J Chem Theory Comput. 2024 Mar 12;20(5):1878-1888. doi: 10.1021/acs.jctc.3c01212. Epub 2024 Feb 22.
The multistate Bennett acceptance ratio (MBAR) method is a prevalent approach for computing the free energies of thermodynamic states. In this work, we introduce BayesMBAR, a Bayesian generalization of the MBAR method. By integration of configurations sampled from thermodynamic states with a prior distribution, BayesMBAR computes a posterior distribution of free energies. Using the posterior distribution, we derive free energy estimations and compute their associated uncertainties. Notably, when a uniform prior distribution is used, BayesMBAR recovers the MBAR's result but provides more accurate uncertainty estimates. Additionally, when prior knowledge about free energies is available, BayesMBAR can incorporate this information into the estimation procedure by using nonuniform prior distributions. As an example, we show that by incorporating the prior knowledge about the smoothness of free energy surfaces, BayesMBAR provides more accurate estimates than the MBAR method. Given MBAR's widespread use in free energy calculations, we anticipate BayesMBAR to be an essential tool in various applications of free energy calculations.
多状态贝内特接受率(MBAR)方法是计算热力学状态自由能的一种常用方法。在这项工作中,我们引入了贝叶斯MBAR,它是MBAR方法的贝叶斯推广。通过将从热力学状态采样的构型与先验分布进行积分,贝叶斯MBAR计算自由能的后验分布。利用后验分布,我们推导自由能估计值并计算其相关的不确定性。值得注意的是,当使用均匀先验分布时,贝叶斯MBAR会恢复MBAR的结果,但能提供更准确的不确定性估计。此外,当有关于自由能的先验知识时,贝叶斯MBAR可以通过使用非均匀先验分布将此信息纳入估计过程。例如,我们表明通过纳入关于自由能表面平滑性的先验知识,贝叶斯MBAR比MBAR方法提供更准确的估计。鉴于MBAR在自由能计算中的广泛应用,我们预计贝叶斯MBAR将成为自由能计算各种应用中的重要工具。