Suppr超能文献

动态预测住院内科患者的康复护理需求。

Dynamic Prediction of Post-Acute Care Needs for Hospitalized Medicine Patients.

机构信息

Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA.

Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

J Am Med Dir Assoc. 2024 Jul;25(7):104939. doi: 10.1016/j.jamda.2024.01.008. Epub 2024 Feb 19.

Abstract

OBJECTIVES

Use patient demographic and clinical characteristics at admission and time-varying in-hospital measures of patient mobility to predict patient post-acute care (PAC) discharge.

DESIGN

Retrospective cohort analysis of electronic medical records.

SETTING AND PARTICIPANTS

Patients admitted to the two participating Hospitals from November 2016 through December 2019 with ≥72 hours in a general medicine service.

METHODS

Discharge location (PAC vs home) was the primary outcome, and 2 time-varying measures of patient mobility, Activity Measure for Post-Acute Care (AM-PAC) Mobility "6-clicks" and Johns Hopkins Highest Level of Mobility, were the primary predictors. Other predictors included demographic and clinical characteristics. For each day of hospitalization, we predicted discharge to PAC using the demographic and clinical characteristics and most recent mobility data within a random forest (RF) for survival, longitudinal, and multivariate (RF-SLAM) data. A regression tree for the daily predicted probabilities of discharge to PAC was constructed to represent a global summary of the RF.

RESULTS

There were 23,090 total patients and compared to PAC, those discharged home were younger (64 vs 71), had shorter length of stay (5 vs 8 days), higher AM-PAC at admission (43 vs 32), and average AM-PAC throughout hospitalization (45 vs 35). AM-PAC was the most important predictor, followed by age, and whether the patient lives alone. The area under the hospital day-specific receiver operating characteristic curve ranged from 0.76 to 0.79 during the first 5 days. The global summary tree explained 75% of the variation in predicted probabilities for PAC from the RF. Sensitivity (75%), specificity (70%), and accuracy (72%) were maximized at a PAC probability threshold of 40%.

CONCLUSIONS AND IMPLICATIONS

Daily assessment of patient mobility should be part of routine practice to help inform care planning by hospital teams. Our prediction model could be used as a valuable tool by multidisciplinary teams in the discharge planning process.

摘要

目的

利用入院时患者的人口统计学和临床特征以及住院期间患者活动度的时变指标来预测患者的急性后期护理(PAC)出院情况。

设计

电子病历回顾性队列分析。

地点和参与者

2016 年 11 月至 2019 年 12 月期间在两家参与医院接受内科服务且住院时间≥72 小时的患者。

方法

出院地点(PAC 或居家)为主要结局,患者活动度的 2 个时变指标,即急性后期护理活动度测量(AM-PAC)“6 次点击”和约翰霍普金斯大学最高活动度,为主要预测指标。其他预测因素包括人口统计学和临床特征。对于住院的每一天,我们使用人口统计学和临床特征以及随机森林(RF)中最新的活动度数据来预测 PAC 出院情况,用于生存、纵向和多变量(RF-SLAM)数据。为了表示 RF 的总体总结,为 PAC 每日预测出院概率构建了回归树。

结果

共有 23090 例患者,与 PAC 相比,居家出院患者年龄更小(64 岁 vs 71 岁)、住院时间更短(5 天 vs 8 天)、入院时 AM-PAC 更高(43 vs 32),住院期间平均 AM-PAC 更高(45 vs 35)。AM-PAC 是最重要的预测指标,其次是年龄和患者是否独居。前 5 天,医院日特异性接收者操作特征曲线下面积范围为 0.76 至 0.79。RF 解释 PAC 预测概率的全局总结树的变异占 75%。在 PAC 概率阈值为 40%时,灵敏度(75%)、特异性(70%)和准确性(72%)达到最大值。

结论和意义

应将患者活动度的日常评估纳入常规实践,以帮助医院团队制定护理计划。我们的预测模型可以作为多学科团队在出院计划过程中的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验