Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, United States.
Department of Anesthesia, University of California, San Francisco, California 94110, United States.
Theranostics. 2024 Jan 27;14(4):1344-1360. doi: 10.7150/thno.92742. eCollection 2024.
Ac, a long-lived α-emitter with a half-life of 9.92 days, has garnered significant attention as a therapeutic radionuclide when coupled with monoclonal antibodies and other targeting vectors. Nevertheless, its clinical utility has been hampered by potential off-target toxicity, a lack of optimized chelators for Ac, and limitations in radiolabeling methods. In a prior study evaluating the effectiveness of CD46-targeted radioimmunotherapy, we found great therapeutic efficacy but also significant toxicity at higher doses. To address these challenges, we have developed a radioimmunoconjugate called Ac-Macropa-PEG-YS5, incorporating a stable PEGylated linker to maximize tumoral uptake and increase tumor-to-background ratios. Our research demonstrates that this conjugate exhibits greater anti-tumor efficacy while minimizing toxicity in prostate cancer 22Rv1 tumors. We synthesized Macropa.NCS and Macropa-PEG-TFP esters and prepared Macropa-PEG-YS5 (with nearly ~1:1 ratio of macropa chelator to antibody YS5) as well as DOTA-YS5 conjugates. These conjugates were then radiolabeled with Ac in a 2 M NHOAc solution at 30 °C, followed by purification using YM30K centrifugal purification. Subsequently, we conducted biodistribution studies and evaluated antitumor activity in nude mice (nu/nu) bearing prostate 22Rv1 xenografts in both single-dose and fractionated dosing studies. Micro-PET imaging studies were performed with Ce-Macropa-PEG-YS5 in 22Rv1 xenografts for 7 days. Toxicity studies were also performed in healthy athymic nude mice. As expected, we achieved a >95% radiochemical yield when labeling Macropa-PEG-YS5 with Ac, regardless of the chelator ratios (ranging from 1 to 7.76 per YS5 antibody). The isolated yield exceeded 60% after purification. Such high conversions were not observed with the DOTA-YS5 conjugate, even at a higher ratio of 8.5 chelators per antibody (RCY of 83%, an isolated yield of 40%). Biodistribution analysis at 7 days post-injection revealed higher tumor uptake for the Ac-Macropa-PEG-YS5 (82.82 ± 38.27 %ID/g) compared to other conjugates, namely Ac-Macropa-PEG-YS5 (38.2 ± 14.4/36.39 ± 12.4 %ID/g) and Ac-DOTA-YS5 (29.35 ± 7.76 %ID/g). The PET Imaging of Ce-Macropa-PEG-YS5 conjugates resulted in a high tumor uptake, and tumor to background ratios. In terms of antitumor activity, Ac-Macropa-PEG-YS5 exhibited a substantial response, leading to prolonged survival compared to Ac-DOTA-YS5, particularly when administered at 4.625 kBq doses, in single or fractionated dose regimens. Chronic toxicity studies observed mild to moderate renal toxicity at 4.625 and 9.25 kBq doses. Our study highlights the promise of Ac-Macropa-PEG-YS5 for targeted alpha particle therapy. The Ac-Macropa-PEG-YS5 conjugate demonstrates improved biodistribution, reduced off-target binding, and enhanced therapeutic efficacy, particularly at lower doses, compared to Ac-DOTA-YS5. Incorporating theranostic Ce PET imaging further enhances the versatility of macropa-PEG conjugates, offering a more effective and safer approach to cancer treatment. Overall, this methodology has a high potential for broader clinical applications.
锕(Ac)是一种半衰期为 9.92 天的长寿命 α 发射器,当与单克隆抗体和其他靶向载体结合时,作为治疗性放射性核素引起了广泛关注。然而,由于潜在的脱靶毒性、缺乏针对 Ac 的优化螯合剂以及放射性标记方法的限制,其临床应用受到了阻碍。在之前评估 CD46 靶向放射免疫治疗效果的研究中,我们发现了很好的治疗效果,但在较高剂量下也存在显著的毒性。为了解决这些挑战,我们开发了一种名为 Ac-Macropa-PEG-YS5 的放射性免疫偶联物,其中包含一个稳定的 PEG 化连接子,以最大限度地提高肿瘤摄取并增加肿瘤与背景的比值。我们的研究表明,这种偶联物在前列腺癌 22Rv1 肿瘤中表现出更强的抗肿瘤疗效,同时最小化了毒性。我们合成了 Macropa.NCS 和 Macropa-PEG-TFP 酯,并制备了 Macropa-PEG-YS5(与抗体 YS5 的近~1:1 的比率)和 DOTA-YS5 缀合物。然后,我们在 30°C 的 2 M NHOAc 溶液中用 Ac 对这些缀合物进行放射性标记,然后使用 YM30K 离心纯化进行纯化。随后,我们在携带前列腺 22Rv1 异种移植物的裸鼠(nu/nu)中进行了生物分布研究,并在单次剂量和分次剂量研究中评估了抗肿瘤活性。在 22Rv1 异种移植物中进行了 Ce-Macropa-PEG-YS5 的微 PET 成像研究,为期 7 天。还在健康的无胸腺裸鼠中进行了毒性研究。不出所料,当用 Ac 标记 Macropa-PEG-YS5 时,我们实现了 >95%的放射化学产率,与螯合剂的比率无关(从每个 YS5 抗体 1 到 7.76)。经过纯化后,分离产率超过 60%。即使在更高的 8.5 个螯合剂/抗体比(RCY 为 83%,分离产率为 40%)下,也没有观察到 DOTA-YS5 缀合物的这种高转化率。注射后 7 天的生物分布分析显示,与其他缀合物(即 Ac-Macropa-PEG-YS5(38.2 ± 14.4/36.39 ± 12.4%ID/g)和 Ac-DOTA-YS5(29.35 ± 7.76%ID/g)相比,Ac-Macropa-PEG-YS5 的肿瘤摄取更高,肿瘤与背景的比值也更高。Ce-Macropa-PEG-YS5 缀合物的 PET 成像导致了高肿瘤摄取和肿瘤与背景的比值。在抗肿瘤活性方面,与 Ac-DOTA-YS5 相比,Ac-Macropa-PEG-YS5 表现出显著的反应,导致生存时间延长,特别是在 4.625 kBq 剂量下,无论是单次剂量还是分次剂量方案。在 4.625 和 9.25 kBq 剂量下观察到轻度至中度的肾脏毒性。我们的研究强调了 Ac-Macropa-PEG-YS5 用于靶向α粒子治疗的潜力。与 Ac-DOTA-YS5 相比,Ac-Macropa-PEG-YS5 缀合物在改善生物分布、减少脱靶结合和增强治疗效果方面表现出了显著的优势,特别是在较低剂量下。将治疗性 Ce PET 成像纳入其中进一步增强了 macropa-PEG 缀合物的多功能性,为癌症治疗提供了更有效和更安全的方法。总体而言,这种方法具有广泛的临床应用潜力。