Dahmer M K, Tienrungroj W, Pratt W B
J Biol Chem. 1985 Jun 25;260(12):7705-15.
Rat liver cytosol contains a heat-labile macromolecule that inhibits the binding of the transformed glucocorticoid-receptor complex to nuclei or DNA-cellulose (Milgrom, E., and Atger, M. (1975) J. Steroid Biochem. 6, 487-492; Simons, S. S., Jr., Martinez, H. M., Garcea, R. L., Baxter, J. D., and Tomkins, G. M. (1976) J. Biol. Chem. 251, 334-343. We have developed a quantitative assay for the inhibitor and have purified it 600-700-fold by ammonium sulfate precipitation, ethanol precipitation, and phosphocellulose and Sephacryl S-300 chromatography. The inhibitory activity copurifies with a Mr = 37,000 protein doublet. Under low salt conditions, both the inhibitory activity and the 37-kDa protein doublet behave as high Mr aggregates that subsequently dissociate in the presence of salt. The inhibitor is positively charged at physiological pH, and it is not affected by digestion with several serine proteases or RNase. The inhibitor does not affect the transformation process, and it does not cause the release of steroid-receptor complexes that have been prebound to DNA-cellulose. The inhibitor preparation does not cleave receptors in L-cell cytosol that are covalently labeled with the site-specific affinity steroid [3H]dexamethasone 21-mesylate. If the steroid-receptor complex is first separated from the great majority of cytosol protein by transforming it and binding it to DNA-cellulose, addition of the inhibitor preparation results in receptor cleavage. Under these conditions, cleavage can be blocked with 1-chloro-3-tosylamido-7-amino-L-2-heptanone and antipain, but protease inhibitors do not affect the inhibition of DNA binding that occurs in whole cytosol. The inhibitor acts through an interaction with the receptor, not with DNA. We suggest that the inhibitor may prove to be a useful tool for studying the interaction of the steroid-receptor complex with DNA or nuclei and speculate that it may be important in determining normal events of the receptor cycle as they occur in the intact cell.
大鼠肝脏胞质溶胶中含有一种热不稳定大分子,它能抑制转化的糖皮质激素受体复合物与细胞核或DNA纤维素的结合(米尔格罗姆,E.,和阿热尔,M.(1975年)《类固醇生物化学杂志》6,487 - 492;西蒙斯,S.S.,小,马丁内斯,H.M.,加尔恰,R.L.,巴克斯特,J.D.,和汤姆金斯,G.M.(1976年)《生物化学杂志》251,334 - 343)。我们已开发出一种针对该抑制剂的定量测定方法,并通过硫酸铵沉淀、乙醇沉淀以及磷酸纤维素和Sephacryl S - 300色谱法将其纯化了600 - 700倍。抑制活性与一种分子量为37,000的蛋白双峰共同纯化。在低盐条件下,抑制活性和37 kDa蛋白双峰均表现为高分子量聚集体,随后在盐存在下解离。该抑制剂在生理pH值下带正电荷,并且不受几种丝氨酸蛋白酶或核糖核酸酶消化的影响。该抑制剂不影响转化过程,也不会导致已预先结合到DNA纤维素上的类固醇受体复合物的释放。抑制剂制剂不会切割L细胞胞质溶胶中用位点特异性亲和类固醇[3H]甲磺酸地塞米松21共价标记的受体。如果通过转化类固醇受体复合物并将其结合到DNA纤维素上,首先将其与绝大多数胞质溶胶蛋白分离,添加抑制剂制剂会导致受体切割。在这些条件下,切割可被1 - 氯 - 3 - 甲苯磺酰胺基 - 7 - 氨基 - L - 2 - 庚酮和抗蛋白酶抑制,但蛋白酶抑制剂不影响全胞质溶胶中发生的DNA结合抑制。该抑制剂通过与受体相互作用发挥作用,而不是与DNA相互作用。我们认为该抑制剂可能被证明是研究类固醇受体复合物与DNA或细胞核相互作用的有用工具,并推测它在确定完整细胞中发生的受体循环的正常事件中可能很重要。