Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300382, China.
Environ Sci Technol. 2024 Mar 26;58(12):5419-5429. doi: 10.1021/acs.est.3c06475. Epub 2024 Feb 23.
Traffic emissions are a dominant source of secondary organic aerosol (SOA) in urban environments. Though tailpipe exhaust has drawn extensive attention, the impact of non-tailpipe emissions on atmospheric SOA has not been well studied. Here, a closure study was performed combining urban tunnel experiments and dynamometer tests using an oxidation flow reactor in situ photo-oxidation. Results show a significant gap between field and laboratory research; the average SOA formation potential from real-world fleet is 639 ± 156 mg kg fuel, higher than the reconstructed result (188 mg kg fuel) based on dynamometer tests coupled with fleet composition inside the tunnel. Considering the minimal variation of SOA/CO in emission standards, we also reconstruct CO and find the critical role of high-emitting events in the real-world SOA burden. Different profiles of organic gases are detected inside the tunnel than tailpipe exhaust, such as more abundant C-C aromatics, C-C species, and benzothiazoles, denoting contributions from non-tailpipe emissions to SOA formation. Using these surrogate chemical compounds, we roughly estimate that high-emitting, evaporative emission, and asphalt-related and tire sublimation share 14, 20, and 10% of the SOA budget, respectively, partially explaining the gap between field and laboratory research. These experimental results highlight the importance of non-tailpipe emissions to atmospheric SOA.
交通排放是城市环境中二次有机气溶胶 (SOA) 的主要来源。尽管排气管废气引起了广泛关注,但非排气管排放对大气 SOA 的影响尚未得到很好的研究。在这里,我们结合城市隧道实验和使用氧化流动反应器的原地光氧化测功机测试进行了封闭研究。结果表明,现场和实验室研究之间存在显著差距;实际车队的 SOA 形成潜力平均值为 639 ± 156 mg kg 燃料,高于基于测功机测试和隧道内车队组成的重建结果(188 mg kg 燃料)。考虑到排放标准中 SOA/CO 的最小变化,我们还对 CO 进行了重建,并发现高排放事件在实际 SOA 负担中起着关键作用。与排气管废气相比,隧道内检测到的有机气体具有不同的特征,例如更丰富的 C-C 芳烃、C-C 物质和苯并噻唑,这表明非排气管排放对 SOA 形成有贡献。使用这些替代化学化合物,我们大致估计高排放、蒸发排放、沥青相关和轮胎升华分别占 SOA 预算的 14%、20%和 10%,部分解释了现场和实验室研究之间的差距。这些实验结果强调了非排气管排放对大气 SOA 的重要性。