Department of Geology and Geological Engineering, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA.
S.S. Papadopulos & Associates, Inc., Rockville, Maryland, USA.
Appl Environ Microbiol. 2024 Mar 20;90(3):e0198723. doi: 10.1128/aem.01987-23. Epub 2024 Feb 23.
Streams impacted by historic mining activity are characterized by acidic pH, unique microbial communities, and abundant metal-oxide precipitation, all of which can influence groundwater-surface water exchange. We investigate how metal-oxide precipitates and hyporheic mixing mediate the composition of microbial communities in two streams receiving acid-rock and mine drainage near Silverton, Colorado, USA. A large, neutral pH hyporheic zone facilitated the precipitation of metal particles/colloids in hyporheic porewaters. A small, low pH hyporheic zone, limited by the presence of a low-permeability, iron-oxyhydroxide layer known as ferricrete, led to the formation of steep geochemical gradients and high dissolved-metal concentrations. To determine how these two hyporheic systems influence microbiome composition, we installed well clusters and deployed microcosms in each stream to sample porewaters and sediments for 16S rRNA gene sequencing. Results indicated that distinct hydrogeochemical conditions were present above and below the ferricrete in the low pH system. A positive feedback loop may be present in the low pH stream where microbially mediated precipitation of iron-oxides contributes to additional clogging of hyporheic pore spaces, separating abundant, iron-oxidizing bacteria (Gallionella spp.) above the ferricrete from rare, low-abundance bacteria below the ferricrete. Metal precipitates and colloids that formed in the neutral pH hyporheic zone were associated with a more diverse phylogenetic community of nonmotile, nutrient-cycling bacteria that may be transported through hyporheic pore spaces. In summary, biogeochemical conditions influence, and are influenced by, hyporheic mixing, which mediates the distribution of micro-organisms and, thus, the cycling of metals in streams receiving acid-rock and mine drainage.
In streams receiving acid-rock and mine drainage, the abundant precipitation of iron minerals can alter how groundwater and surface water mix along streams (in what is known as the "hyporheic zone") and may shape the distribution of microbial communities. The findings presented here suggest that neutral pH streams with large, well-mixed hyporheic zones may harbor and transport diverse microorganisms attached to particles/colloids through hyporheic pore spaces. In acidic streams where metal oxides clog pore spaces and limit hyporheic exchange, iron-oxidizing bacteria may dominate and phylogenetic diversity becomes low. The abundance of iron-oxidizing bacteria in acid mine drainage streams has the potential to contribute to additional clogging of hyporheic pore spaces and the accumulation of toxic metals in the hyporheic zone. This research highlights the dynamic interplay between hydrology, geochemistry, and microbiology at the groundwater-surface water interface of acid mine drainage streams.
受历史采矿活动影响的溪流的特点是酸性 pH 值、独特的微生物群落和丰富的金属氧化物沉淀,所有这些都会影响地下水与地表水的交换。我们研究了在美国科罗拉多州银顿市附近的两条溪流中,金属氧化物沉淀和底层混合如何影响接受酸性岩石和矿山排水的溪流中的微生物群落的组成。一个较大的、中性 pH 值的底层区域促进了底层孔隙水中金属颗粒/胶体的沉淀。一个较小的、低 pH 值的底层区域受到一层低渗透性、铁氢氧化物层(称为赤铁矿)的限制,导致形成陡峭的地球化学梯度和高溶解金属浓度。为了确定这两个底层系统如何影响微生物组的组成,我们在每个溪流中安装了井群并部署了微宇宙来采集孔隙水和沉积物进行 16S rRNA 基因测序。结果表明,在低 pH 系统的赤铁矿上方和下方存在不同的水文地球化学条件。在低 pH 溪流中,可能存在微生物介导的铁氧化物沉淀会导致底层孔隙空间进一步堵塞的正反馈循环,从而将赤铁矿上方丰富的铁氧化细菌(Gallionella spp.)与赤铁矿下方稀有、低丰度的细菌隔离开来。在中性 pH 底层区域形成的金属沉淀物和胶体与非运动、营养循环细菌的更多元化系统发育群落相关,这些细菌可能通过底层孔隙空间运输。总之,生物地球化学条件影响着底层混合,而底层混合又影响着微生物的分布,从而影响了接受酸性岩石和矿山排水的溪流中的金属循环。
在接受酸性岩石和矿山排水的溪流中,丰富的铁矿物沉淀会改变地下水和地表水在溪流中混合的方式(称为“底层区域”),并可能影响微生物群落的分布。这里提出的发现表明,具有大而混合良好的底层区域的中性 pH 值溪流可能栖息并通过底层孔隙空间运输附着在颗粒/胶体上的多样化微生物。在限制底层交换并限制底层混合的酸性溪流中,铁氧化细菌可能占主导地位,系统发育多样性降低。酸性矿山排水溪流中铁氧化细菌的丰度有可能导致底层孔隙空间的进一步堵塞以及有毒金属在底层区域的积累。这项研究强调了酸性矿山排水溪流中地下水与地表水界面水文、地球化学和微生物学之间的动态相互作用。