Suppr超能文献

用于仿生运动康复辅助的自适应膝关节矫形器的设计与优化

Design and Optimization of an Adaptive Knee Joint Orthosis for Biomimetic Motion Rehabilitation Assistance.

作者信息

Liu Kun, Ji Shuo, Liu Yong, Zhang Shizhong, Dai Lei

机构信息

School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.

出版信息

Biomimetics (Basel). 2024 Feb 7;9(2):98. doi: 10.3390/biomimetics9020098.

Abstract

In this paper, an adaptive knee joint orthosis with a variable rotation center for biomimetic motion rehabilitation assistance suitable for patients with knee joint movement dysfunction is designed. Based on the kinematic information of knee joint motion obtained by a motion capture system, a Revolute-Prismatic-Revolute (RPR) model is established to simulate the biomimetic motion of the knee joint, then a corresponding implementation for repetitively driving the flexion-extension motion of the knee joint, mainly assembled by a double-cam meshing mechanism, is designed. The pitch curve of each cam is calculated based on the screw theory. During the design process, size optimization is used to reduce the weight of the equipment, resulting in a reduction from 1.96 kg to 1.16 kg, achieving the goal of lightweight equipment. Finally, a prototype of the designed orthosis with the desired biomimetic rotation function is prepared and verified. The result shows that the rotation center of the prototype can achieve biomimetic motion coincident with the rotation center of an active knee joint, which can successfully provide rehabilitation assistance for the knee joint flexion-extension motion.

摘要

本文设计了一种具有可变旋转中心的自适应膝关节矫形器,用于为膝关节运动功能障碍患者提供仿生运动康复辅助。基于运动捕捉系统获取的膝关节运动学信息,建立了一个旋转-棱柱-旋转(RPR)模型来模拟膝关节的仿生运动,然后设计了一种主要由双凸轮啮合机构组成的用于重复驱动膝关节屈伸运动的相应装置。基于螺旋理论计算每个凸轮的节曲线。在设计过程中,采用尺寸优化来减轻设备重量,使重量从1.96千克降至1.16千克,实现了设备轻量化的目标。最后,制备并验证了具有所需仿生旋转功能的设计矫形器原型。结果表明,该原型的旋转中心能够实现与活动膝关节旋转中心重合的仿生运动,可为膝关节屈伸运动成功提供康复辅助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/287d/10886838/e48c7f10f2c7/biomimetics-09-00098-g001.jpg

相似文献

1
Design and Optimization of an Adaptive Knee Joint Orthosis for Biomimetic Motion Rehabilitation Assistance.
Biomimetics (Basel). 2024 Feb 7;9(2):98. doi: 10.3390/biomimetics9020098.
2
Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion.
Clin Biomech (Bristol). 2011 Oct;26(8):847-52. doi: 10.1016/j.clinbiomech.2011.04.002. Epub 2011 May 5.
3
A self-aligning knee joint for walking assistance devices.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2222-2227. doi: 10.1109/EMBC.2016.7591171.
4
A data process of human knee joint kinematics obtained by motion-capture measurement.
BMC Med Inform Decis Mak. 2021 Apr 8;21(1):121. doi: 10.1186/s12911-021-01483-0.
5
Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment.
J Biomech. 2000 Aug;33(8):1029-34. doi: 10.1016/s0021-9290(00)00056-7.
7
Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
Clin Biomech (Bristol). 2006 Dec;21(10):1081-9. doi: 10.1016/j.clinbiomech.2006.06.008. Epub 2006 Sep 1.
8
Knee joint prototype based on cam mechanism - design and video analysis.
Comput Methods Biomech Biomed Engin. 2023 Oct-Dec;26(14):1691-1701. doi: 10.1080/10255842.2022.2132819. Epub 2022 Oct 13.
9
Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint.
Biomimetics (Basel). 2023 Apr 14;8(2):156. doi: 10.3390/biomimetics8020156.

引用本文的文献

本文引用的文献

1
Analysis of Ankle Muscle Dynamics during the STS Process Based on Wearable Sensors.
Sensors (Basel). 2023 Jul 22;23(14):6607. doi: 10.3390/s23146607.
2
Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint.
Biomimetics (Basel). 2023 Apr 14;8(2):156. doi: 10.3390/biomimetics8020156.
3
Factors Contributing to Traffic Accidents in Hospitalized Patients in Terms of Severity and Functionality.
Int J Environ Res Public Health. 2023 Jan 2;20(1):853. doi: 10.3390/ijerph20010853.
4
The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
Biomed Res Int. 2022 Aug 29;2022:5029663. doi: 10.1155/2022/5029663. eCollection 2022.
5
Evaluating Knee Mechanisms for Assistive Devices.
Front Neurorobot. 2022 May 30;16:790070. doi: 10.3389/fnbot.2022.790070. eCollection 2022.
6
Design and Control of an Adaptive Knee Joint Exoskeleton Mechanism with Buffering Function.
Sensors (Basel). 2021 Dec 15;21(24):8390. doi: 10.3390/s21248390.
7
Trends in Incidence and Mortality of Stroke in China From 1990 to 2019.
Front Neurol. 2021 Nov 22;12:759221. doi: 10.3389/fneur.2021.759221. eCollection 2021.
8
Deep convolutional neural network for segmentation of knee joint anatomy.
Magn Reson Med. 2018 Dec;80(6):2759-2770. doi: 10.1002/mrm.27229. Epub 2018 May 17.
9
Movement disorders and stroke.
Rev Neurol (Paris). 2016 Aug-Sep;172(8-9):483-487. doi: 10.1016/j.neurol.2016.07.006. Epub 2016 Jul 28.
10
Design of a knee joint mechanism that adapts to individual physiology.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2061-4. doi: 10.1109/EMBC.2014.6944021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验