Suppr超能文献

一种基于上置信界和蒙特卡罗采样的二维样本熵快速估计算法。

A Fast Algorithm for Estimating Two-Dimensional Sample Entropy Based on an Upper Confidence Bound and Monte Carlo Sampling.

作者信息

Zhou Zeheng, Jiang Ying, Liu Weifeng, Wu Ruifan, Li Zerong, Guan Wenchao

机构信息

School of Computer Science and Engineering, Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

Entropy (Basel). 2024 Feb 10;26(2):155. doi: 10.3390/e26020155.

Abstract

The two-dimensional sample entropy marks a significant advance in evaluating the regularity and predictability of images in the information domain. Unlike the direct computation of sample entropy, which incurs a time complexity of O(N2) for the series with length, the Monte Carlo-based algorithm for computing one-dimensional sample entropy (MCSampEn) markedly reduces computational costs by minimizing the dependence on . This paper extends MCSampEn to two dimensions, referred to as MCSampEn2D. This new approach substantially accelerates the estimation of two-dimensional sample entropy, outperforming the direct method by more than a thousand fold. Despite these advancements, MCSampEn2D encounters challenges with significant errors and slow convergence rates. To counter these issues, we have incorporated an upper confidence bound (UCB) strategy in MCSampEn2D. This strategy involves assigning varied upper confidence bounds in each Monte Carlo experiment iteration to enhance the algorithm's speed and accuracy. Our evaluation of this enhanced approach, dubbed UCBMCSampEn2D, involved the use of medical and natural image data sets. The experiments demonstrate that UCBMCSampEn2D achieves a 40% reduction in computational time compared to MCSampEn2D. Furthermore, the errors with UCBMCSampEn2D are only 30% of those observed in MCSampEn2D, highlighting its improved accuracy and efficiency.

摘要

二维样本熵在评估信息域中图像的规律性和可预测性方面取得了重大进展。与直接计算样本熵不同,对于长度为N的序列,直接计算样本熵的时间复杂度为O(N2),而基于蒙特卡罗的一维样本熵计算算法(MCSampEn)通过最小化对N的依赖显著降低了计算成本。本文将MCSampEn扩展到二维,称为MCSampEn2D。这种新方法大幅加速了二维样本熵的估计,比直接方法快一千多倍。尽管有这些进展,但MCSampEn2D仍面临显著误差和收敛速度慢的挑战。为应对这些问题,我们在MCSampEn2D中纳入了上置信界(UCB)策略。该策略在每次蒙特卡罗实验迭代中分配不同的上置信界,以提高算法的速度和准确性。我们对这种增强方法(称为UCBMCSampEn2D)的评估涉及使用医学和自然图像数据集。实验表明,与MCSampEn2D相比,UCBMCSampEn2D的计算时间减少了40%。此外,UCBMCSampEn2D的误差仅为MCSampEn2D中观察到的误差的30%,突出了其更高的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be54/10887568/e081e7cc000a/entropy-26-00155-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验