Suppr超能文献

隐球菌感染中的抗真菌耐药性

Antifungal Resistance in Cryptococcal Infections.

作者信息

Melhem Marcia S C, Leite Júnior Diniz Pereira, Takahashi Juliana P F, Macioni Milena Bronze, Oliveira Lidiane de, de Araújo Lisandra Siufi, Fava Wellington S, Bonfietti Lucas X, Paniago Anamaria M M, Venturini James, Espinel-Ingroff Ana

机构信息

Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil.

Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil.

出版信息

Pathogens. 2024 Jan 29;13(2):128. doi: 10.3390/pathogens13020128.

Abstract

Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of and species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and VNI) is available.

摘要

抗真菌治疗,尤其是使用唑类药物,可能会增加近平滑念珠菌和耳念珠菌复合种群(SC)中耐药菌株的发生率,这种情况在大多数发展中国家尤为常见。鉴于这些菌种主要感染免疫功能低下的宿主,感染往往较为严重且难以治疗。本综述涵盖以下主题:1. 感染菌种及其毒力;2. 治疗方法;3. 抗真菌药敏试验方法及可用的分类终点;4. 耐药的遗传机制;5. 临床耐药情况;6. 氟康唑最低抑菌浓度(MIC)、临床疗效;7. 环境影响因素;8. 宿主因素的相关性,包括药代动力学/药效学(PK/PD)参数,对预测治疗临床疗效的作用。目前,流行病学截断值(ECVs/ECOFFs)是这些菌种最可靠的耐药检测指标,因为针对这些菌种仅有一个临床折点(两性霉素B和伏立康唑敏感)可供参考。

相似文献

1
Antifungal Resistance in Cryptococcal Infections.
Pathogens. 2024 Jan 29;13(2):128. doi: 10.3390/pathogens13020128.
5
Adaptation to Fluconazole via Aneuploidy Enables Cross-Adaptation to Amphotericin B and Flucytosine in Cryptococcus neoformans.
Microbiol Spectr. 2021 Oct 31;9(2):e0072321. doi: 10.1128/Spectrum.00723-21. Epub 2021 Sep 29.
10
In vitro susceptibility of the yeast pathogen cryptococcus to fluconazole and other azoles varies with molecular genotype.
J Clin Microbiol. 2010 Nov;48(11):4115-20. doi: 10.1128/JCM.01271-10. Epub 2010 Sep 15.

引用本文的文献

1
Occurrence, Properties, Applications and Analytics of Cytosine and Its Derivatives.
Molecules. 2025 Sep 3;30(17):3598. doi: 10.3390/molecules30173598.
2
Pathogenicity and virulence of Cryptococcus neoformans from an environmental perspective.
Virulence. 2025 Dec;16(1):2547090. doi: 10.1080/21505594.2025.2547090. Epub 2025 Aug 14.
3
Agricultural propiconazole residues promote triazole cross-resistance in through and efflux pump overexpression.
Antimicrob Agents Chemother. 2025 Sep 3;69(9):e0076525. doi: 10.1128/aac.00765-25. Epub 2025 Jul 31.
5
Antifungal Activity of Selected Naphthoquinones and Their Synergistic Combination with Amphotericin B Against H99.
Antibiotics (Basel). 2025 Jun 13;14(6):602. doi: 10.3390/antibiotics14060602.
6
[Cryptococcus albidus, Naganishia albida, primary skin infection, first case reported in Mexico].
Rev Med Inst Mex Seguro Soc. 2025 Mar 3;63(2):e6543. doi: 10.5281/zenodo.14617216.
7
Therapeutic role of fluconazole in immunocompetent patients with pulmonary cryptococcosis: A case report.
IDCases. 2025 Feb 18;40:e02188. doi: 10.1016/j.idcr.2025.e02188. eCollection 2025.
8
Fluconazole Resistance and Heteroresistance in Cryptococcus spp.: Mechanisms and Implications.
Rev Soc Bras Med Trop. 2025 Mar 24;58:e002002025. doi: 10.1590/0037-8682-0328-2024. eCollection 2025.
9
Enhancing Antifungal Drug Discovery Through Co-Culture with Antarctic Strain CBMAI 1855.
Int J Mol Sci. 2024 Nov 27;25(23):12744. doi: 10.3390/ijms252312744.
10
Development of /Phi as a new dominant selection system for genetic manipulation in .
Microbiol Spectr. 2025 Jan 7;13(1):e0161824. doi: 10.1128/spectrum.01618-24. Epub 2024 Nov 20.

本文引用的文献

1
2
Methods for Antifungal Susceptibility Testing of the / Complex: Strengths and Limitations.
J Fungi (Basel). 2023 May 5;9(5):542. doi: 10.3390/jof9050542.
3
Cryptococcus neoformans, a global threat to human health.
Infect Dis Poverty. 2023 Mar 17;12(1):20. doi: 10.1186/s40249-023-01073-4.
5
Host populations, challenges, and commercialization of cryptococcal vaccines.
PLoS Pathog. 2023 Feb 9;19(2):e1011115. doi: 10.1371/journal.ppat.1011115. eCollection 2023 Feb.
7
COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic.
J Fungi (Basel). 2022 Oct 21;8(10):1111. doi: 10.3390/jof8101111.
8
Architecture of the dynamic fungal cell wall.
Nat Rev Microbiol. 2023 Apr;21(4):248-259. doi: 10.1038/s41579-022-00796-9. Epub 2022 Oct 20.
9
Treatment of Cryptococcal Meningitis: How Have We Got Here and Where are We Going?
Drugs. 2022 Aug;82(12):1237-1249. doi: 10.1007/s40265-022-01757-5. Epub 2022 Sep 16.
10
The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis.
Lancet Infect Dis. 2022 Dec;22(12):1748-1755. doi: 10.1016/S1473-3099(22)00499-6. Epub 2022 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验