Suppr超能文献

核糖体停滞肽的功能域受周围非保守残基的影响。

Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues.

机构信息

Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA.

Department of Biology, Texas A&M University, College Station, Texas, USA.

出版信息

J Biol Chem. 2024 Mar;300(3):105780. doi: 10.1016/j.jbc.2024.105780. Epub 2024 Feb 22.

Abstract

Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp-directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.

摘要

大肠杆菌 tnaCAB 操纵子的表达负责 L-色氨酸 (L-Trp) 的运输和分解代谢,受 L-Trp 定向翻译阻滞和核糖体阻滞肽 TnaC 的调节。TnaC 的功能依赖于分布在整个肽中的保守残基,这些残基参与在核糖体出口隧道中形成 L-Trp 结合位点,并抑制核糖体功能。我们旨在了解这些关键保守残基周围的非保守氨基酸是否在 TnaC 介导的核糖体阻滞中发挥功能作用。我们已经分离出两种基因内抑制突变,它们可以恢复 TnaC 突变体的阻滞功能;其中一个突变位于 L-Trp 结合位点附近,而另一个突变位于核糖体活性位点附近。我们使用报告基因融合实验表明,这两种抑制突变对参与形成游离 L-Trp 结合位点的保守残基中的 TnaC 突变体具有相似的影响。然而,它们在抑制核糖体活性位点上保守的 TnaC 残基的失活突变方面存在差异。通过核糖体足迹实验,我们确定这两种抑制突变都产生了对 L-Trp 高度敏感的 TnaC 肽。用分离的被阻滞核糖体进行的嘌呤霉素挑战实验表明,这两种 TnaC 抑制突变体在存在 L-Trp 的情况下对嘌呤霉素诱导的肽酰-tRNA 切割具有抗性;然而,它们在没有 L-Trp 的情况下对嘌呤霉素的抗性不同。我们提出,TnaC 肽有两个功能不同的片段,一个是传感器域,一个是停滞域,这些域的功能多样性由其周围非保守残基的性质来微调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb5e/10941005/585ea79cbc5b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验