Suppr超能文献

基于车桥同步振动数据模态分析的桥梁固有频率估计

Estimating Bridge Natural Frequencies Based on Modal Analysis of Vehicle-Bridge Synchronized Vibration Data.

作者信息

Mudahemuka Eugene, Miyagi Masatatsu, Shin Ryota, Kaneko Naoki, Okada Yukihiko, Yamamoto Kyosuke

机构信息

Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.

Center for Artificial Intelligence Research/Institute of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.

出版信息

Sensors (Basel). 2024 Feb 6;24(4):1060. doi: 10.3390/s24041060.

Abstract

This paper presents a method for accurately estimating the natural frequencies of bridges by simultaneously measuring the acceleration vibration data of vehicles and bridges and applying modal analysis theory. Vibration sensors synchronized with GPS timing were installed on both vehicles and bridges, achieving stable and high-precision time synchronization. This enabled the computation of the bridge's Frequency Response Functions (FRFs) for each mode, leading to a refined estimation of natural frequencies. The validity of the theory was confirmed through numerical simulations and experimental tests. The simulations confirmed its effectiveness, and similar trends were observed in actual bridge measurements. Consequently, this method significantly enhances the feasibility of bridge health monitoring systems. The proposed method is suitable for road bridges with spans ranging from short- to medium-span length, where the vehicle is capable of exciting the bridge.

摘要

本文提出了一种通过同时测量车辆和桥梁的加速度振动数据并应用模态分析理论来精确估计桥梁固有频率的方法。与GPS定时同步的振动传感器安装在车辆和桥梁上,实现了稳定且高精度的时间同步。这使得能够计算桥梁各阶模态的频率响应函数(FRF),从而对固有频率进行精确估计。通过数值模拟和实验测试证实了该理论的有效性。模拟结果证实了其有效性,并且在实际桥梁测量中也观察到了类似趋势。因此,该方法显著提高了桥梁健康监测系统的可行性。所提出的方法适用于跨度从短到中等的公路桥梁,在这种情况下车辆能够激励桥梁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b151/10891791/a323132de9c6/sensors-24-01060-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验