Suppr超能文献

用于遥感服务推荐的基于相似性图学习的时间感知双长短期记忆神经网络

Time-Aware Dual LSTM Neural Network with Similarity Graph Learning for Remote Sensing Service Recommendation.

作者信息

Zhang Jinkai, Ma Wenming, Zhang En, Xia Xuchen

机构信息

School of Computer and Control Engineering, Yantai University, Yantai 264005, China.

出版信息

Sensors (Basel). 2024 Feb 11;24(4):1185. doi: 10.3390/s24041185.

Abstract

Technological progress has led to significant advancements in Earth observation and satellite systems. However, some services associated with remote sensing face issues related to timeliness and relevance, which affect the application of remote sensing resources in various fields and disciplines. The challenge now is to help end-users make precise decisions and recommendations for relevant resources that meet the demands of their specific domains from the vast array of remote sensing resources available. In this study, we propose a remote sensing resource service recommendation model that incorporates a time-aware dual LSTM neural network with similarity graph learning. We further use the stream push technology to enhance the model. We first construct interaction history behavior sequences based on users' resource search history. Then, we establish a category similarity relationship graph structure based on the cosine similarity matrix between remote sensing resource categories. Next, we use LSTM to represent historical sequences and Graph Convolutional Networks (GCN) to represent graph structures. We construct similarity relationship sequences by combining historical sequences to explore exact similarity relationships using LSTM. We embed user IDs to model users' unique characteristics. By implementing three modeling approaches, we can achieve precise recommendations for remote sensing services. Finally, we conduct experiments to evaluate our methods using three datasets, and the experimental results show that our method outperforms the state-of-the-art algorithms.

摘要

技术进步推动了地球观测和卫星系统的显著发展。然而,一些与遥感相关的服务面临及时性和相关性方面的问题,这影响了遥感资源在各个领域和学科中的应用。当前的挑战是帮助终端用户从大量可用的遥感资源中,针对满足其特定领域需求的相关资源做出精确的决策和推荐。在本研究中,我们提出了一种遥感资源服务推荐模型,该模型结合了具有相似性图学习的时间感知双长短期记忆(LSTM)神经网络。我们进一步使用流推送技术来增强该模型。我们首先基于用户的资源搜索历史构建交互历史行为序列。然后,我们基于遥感资源类别之间的余弦相似性矩阵建立类别相似性关系图结构。接下来,我们使用LSTM来表示历史序列,使用图卷积网络(GCN)来表示图结构。我们通过组合历史序列来构建相似性关系序列,以使用LSTM探索精确的相似性关系。我们嵌入用户ID来对用户的独特特征进行建模。通过实施三种建模方法,我们可以实现对遥感服务的精确推荐。最后,我们使用三个数据集进行实验来评估我们的方法,实验结果表明我们的方法优于现有算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9410/10893055/d68772291b51/sensors-24-01185-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验