Suppr超能文献

用于同步多模态记录的实验室流层

The Lab Streaming Layer for Synchronized Multimodal Recording.

作者信息

Kothe Christian, Shirazi Seyed Yahya, Stenner Tristan, Medine David, Boulay Chadwick, Grivich Matthew I, Mullen Tim, Delorme Arnaud, Makeig Scott

出版信息

bioRxiv. 2024 Feb 14:2024.02.13.580071. doi: 10.1101/2024.02.13.580071.

Abstract

Accurately recording the interactions of humans or other organisms with their environment or other agents requires synchronized data access via multiple instruments, often running independently using different clocks. Active, hardware-mediated solutions are often infeasible or prohibitively costly to build and run across arbitrary collections of input systems. The Lab Streaming Layer (LSL) offers a software-based approach to synchronizing data streams based on per-sample time stamps and time synchronization across a common LAN. Built from the ground up for neurophysiological applications and designed for reliability, LSL offers zero-configuration functionality and accounts for network delays and jitters, making connection recovery, offset correction, and jitter compensation possible. These features ensure precise, continuous data recording, even in the face of interruptions. The LSL ecosystem has grown to support over 150 data acquisition device classes as of Feb 2024, and establishes interoperability with and among client software written in several programming languages, including C/C++, Python, MATLAB, Java, C#, JavaScript, Rust, and Julia. The resilience and versatility of LSL have made it a major data synchronization platform for multimodal human neurobehavioral recording and it is now supported by a wide range of software packages, including major stimulus presentation tools, real-time analysis packages, and brain-computer interfaces. Outside of basic science, research, and development, LSL has been used as a resilient and transparent backend in scenarios ranging from art installations to stage performances, interactive experiences, and commercial deployments. In neurobehavioral studies and other neuroscience applications, LSL facilitates the complex task of capturing organismal dynamics and environmental changes using multiple data streams at a common timebase while capturing time details for every data frame.

摘要

准确记录人类或其他生物体与环境或其他因素之间的相互作用,需要通过多种仪器同步数据访问,这些仪器通常使用不同的时钟独立运行。对于跨任意输入系统集合构建和运行的主动式硬件介导解决方案,往往不可行或成本过高。实验室流层(LSL)提供了一种基于软件的方法,可基于每个样本的时间戳和通过公共局域网进行的时间同步来同步数据流。LSL是为神经生理学应用全新构建的,设计注重可靠性,提供零配置功能,并考虑到网络延迟和抖动,从而实现连接恢复、偏移校正和抖动补偿。这些特性确保即使面对中断也能进行精确、连续的数据记录。截至2024年2月,LSL生态系统已发展到支持超过150种数据采集设备类别,并与用多种编程语言编写的客户端软件建立了互操作性,这些编程语言包括C/C++、Python、MATLAB、Java、C#、JavaScript、Rust和Julia。LSL的弹性和通用性使其成为多模式人类神经行为记录的主要数据同步平台,现在有广泛的软件包支持它,包括主要的刺激呈现工具、实时分析包和脑机接口。在基础科学、研究和开发之外,LSL已在从艺术装置到舞台表演、互动体验和商业部署等各种场景中用作弹性且透明的后端。在神经行为研究和其他神经科学应用中,LSL有助于使用多个基于公共时基的数据流捕获生物体动态和环境变化这一复杂任务,同时为每个数据帧捕获时间细节。

相似文献

1
The Lab Streaming Layer for Synchronized Multimodal Recording.
bioRxiv. 2024 Feb 14:2024.02.13.580071. doi: 10.1101/2024.02.13.580071.
2
Two common issues in synchronized multimodal recordings with EEG: Jitter and latency.
Neurosci Res. 2024 Jun;203:1-7. doi: 10.1016/j.neures.2023.12.003. Epub 2023 Dec 22.
4
Synchronization of ear-EEG and audio streams in a portable research hearing device.
Front Neurosci. 2022 Sep 1;16:904003. doi: 10.3389/fnins.2022.904003. eCollection 2022.
6
Effective Synchronization of EEG and EMG for Mobile Brain/Body Imaging in Clinical Settings.
Front Hum Neurosci. 2018 Jan 11;11:652. doi: 10.3389/fnhum.2017.00652. eCollection 2017.
7
NeuroTerrain--a client-server system for browsing 3D biomedical image data sets.
BMC Bioinformatics. 2007 Feb 5;8:40. doi: 10.1186/1471-2105-8-40.
8
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
J Neurosci Methods. 2014 Feb 15;223:123-32. doi: 10.1016/j.jneumeth.2013.12.002. Epub 2013 Dec 15.
9
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
10
SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans.
Biomed Phys Eng Express. 2020 Apr 15;6(3):035023. doi: 10.1088/2057-1976/ab6e20.

引用本文的文献

1
Evaluating the effectiveness of integrating biofeedback in the treatment of aggressive outbursts (BRET-IA2): A study protocol.
PLoS One. 2025 Jul 7;20(7):e0327361. doi: 10.1371/journal.pone.0327361. eCollection 2025.
2
Validation of the EmotiBit wearable sensor for heart-based measures under varying workload conditions.
Front Neuroergon. 2025 Jun 18;6:1585469. doi: 10.3389/fnrgo.2025.1585469. eCollection 2025.
3
Neural speech tracking in a virtual acoustic environment: audio-visual benefit for unscripted continuous speech.
Front Hum Neurosci. 2025 Apr 9;19:1560558. doi: 10.3389/fnhum.2025.1560558. eCollection 2025.
4
Mobile EEG for the study of cognitive-motor interference during swimming?
Front Hum Neurosci. 2024 Aug 29;18:1466853. doi: 10.3389/fnhum.2024.1466853. eCollection 2024.
5
Events in context-The HED framework for the study of brain, experience and behavior.
Front Neuroinform. 2024 May 23;18:1292667. doi: 10.3389/fninf.2024.1292667. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验