Prakash Swayam, Dhanushkodi Nisha R, Singer Mahmoud, Quadiri Afshana, Zayou Latifa, Vahed Hawa, Coulon Pierre-Gregoire, Ibraim Izabela Coimbra, Tafoya Christine, Hitchcock Lauren, Landucci Gary, Forthal Donald N, El Babsiri Assia, Tifrea Delia F, Figueroa Cesar J, Nesburn Anthony B, Kuppermann Baruch D, Gil Daniel, Jones Trevor M, Ulmer Jeffrey B, BenMohamed Lbachir
Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697.
Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA.
bioRxiv. 2024 Feb 15:2024.02.14.580225. doi: 10.1101/2024.02.14.580225.
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8 and CD4 T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): () Induced high frequencies of lung-resident antigen-specific CXCR5CD4 T follicular helper (T) cells, GzmBCD4 and GzmBCD8 cytotoxic T cells (T), and CD69IFN-γTNFαCD4 and CD69IFN-γTNFαCD8 effector T cells (T); and () Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
第一代仅基于刺突蛋白的新冠疫苗已成功有助于降低由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染导致的住院、重症和死亡风险。然而,这些疫苗诱导的免疫力减弱未能阻止2020年至2024年出现的许多变异株(VOCs)引起的免疫逃逸,导致新冠疫情长期持续。我们推测,一种包含高度保守的非刺突SARS-CoV-2抗原的下一代冠状病毒(CoV)疫苗将赋予针对多种VOCs更强、更广泛的交叉保护性免疫。在本研究中,我们在870万株SARS-CoV-2毒株、21种VOCs、SARS-CoV、中东呼吸综合征冠状病毒(MERS-CoV)、普通感冒冠状病毒和动物冠状病毒中鉴定出10种高度保守的非刺突抗原。这10种抗原中的7种被未接种疫苗的无症状新冠患者的CD8和CD4 T细胞优先识别,与VOC感染无关。7种保守的非刺突T细胞抗原中的3种属于早期表达的复制和转录复合体(RTC)区域,当作为包裹在脂质纳米颗粒(LNP)中的核苷修饰mRNA(即基于mRNA/LNP的泛冠状病毒疫苗)与刺突蛋白联合给予金黄地鼠时:(1)诱导肺驻留抗原特异性CXCR5 CD4 T滤泡辅助(T)细胞、颗粒酶B CD4和颗粒酶B CD8细胞毒性T细胞(T)以及CD69 IFN-γ TNF-α CD4和CD-69 IFN-γ TNF-α CD8效应T细胞(T)的高频率产生;(2)降低由各种VOCs引起的病毒载量和新冠样症状,包括高致病性的B.1.617.2德尔塔变异株和高传播性的高度刺突突变的XBB1.5奥密克戎亚变异株。基于mRNA/LNP的泛冠状病毒联合疫苗可迅速适用于临床,以赋予针对新出现的高度突变和致病性VOCs更广泛的交叉保护性免疫。