Suppr超能文献

用于家庭可再生能源管理的物联网数据集。

Internet of things dataset for home renewable energy management.

作者信息

Ramadan Rabie A

机构信息

Department of Information Systems, College of Economics, Management & Information Systems, Nizwa University, Nizwa, Sultanate of Oman.

Computer Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt.

出版信息

Data Brief. 2024 Feb 10;53:110166. doi: 10.1016/j.dib.2024.110166. eCollection 2024 Apr.

Abstract

Smart cities, as well as smart homes research, are becoming of concern, especially in the field of energy consumption and production. However, there is a lack in the dataset that can be used to simulate smart city energy consumption and prediction or even smart homes. Therefore, this paper provides a carefully generated dataset for smart home energy management simulation. Five datasets are generated and analysed to ensure suitability, including 20, 50, 100, and 200 homes across 365 days. For more accurate data, energy consumption and production for 50 homes are generated based on real input taken from a dataset for homes in Saudi Arabia. Due to the unavailability of a comprehensive dataset related to the complex scenario of smart home sensors, energy consumption, and peer-to-peer data exchange, synthetic data was generated to support the simulation of smart home energy generation and consumption. This synthetic data plays a crucial role in situations where simulating uncommon events, ensuring data availability, facilitating extensive experimentation and model validation, and enabling scalability are paramount. It offers a valuable opportunity to incorporate these rare yet significant occurrences into the simulation, particularly in the context of infrequent events, such as abnormal energy consumption patterns observed in smart homes. The generated data is analysed and validated in this article, ready to be used for many smart home and city research.

摘要

智慧城市以及智能家居研究正日益受到关注,尤其是在能源消耗和生产领域。然而,目前缺乏可用于模拟智慧城市能源消耗及预测甚至智能家居的数据集。因此,本文提供了一个精心生成的用于智能家居能源管理模拟的数据集。生成并分析了五个数据集以确保其适用性,包括涵盖365天的20户、50户、100户和200户家庭的数据。为了获得更准确的数据,基于从沙特阿拉伯家庭数据集中获取的实际输入生成了50户家庭的能源消耗和生产数据。由于缺乏与智能家居传感器、能源消耗及对等数据交换的复杂场景相关的综合数据集,生成了合成数据以支持智能家居能源生成和消耗的模拟。这种合成数据在模拟罕见事件、确保数据可用性、促进广泛实验和模型验证以及实现可扩展性至关重要的情况下发挥着关键作用。它提供了一个将这些罕见但重要的事件纳入模拟的宝贵机会,特别是在诸如智能家居中观察到的异常能源消耗模式等不常见事件的背景下。本文对生成的数据进行了分析和验证,可用于许多智能家居和城市研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bcc/10884744/e89f9fd6507a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验