Martin C, Hervé L, Sedmidubsky D, Bolletta J P, Damay F, Maignan A
Laboratoire CRISMAT, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050 Caen, France.
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic.
J Phys Condens Matter. 2024 Mar 7;36(22). doi: 10.1088/1361-648X/ad2d23.
NiNbOis an insulating compensated ferrimagnet with= 77 K and= 33 K. We report here the study of the magnetic anisotropy using millimeter-size crystals grown in an image furnace. The magnetization measurements, vs temperature, performed withaligned along the three main crystallographic axes, show similar Curie-Weiss temperatures (≈ 190 K) and rather similar effective paramagnetic moments (from 3.5to 3.6). This suggests that the strongest magnetic interaction is the antiferromagnetic one, coupling the ferromagnetic distorted honeycomb layers and zigzag ribbons via face sharing NiOoctahedra. This strong antiferromagnetic coupling is supported by DFT calculations that do not evidence any inter site ferromagnetic interaction, leading to total compensation between magnetic moments of both Nisites. Measurements vs magnetic field belowreveal an anisotropic behaviour, with square magnetization loops forin theplane, whereas linear() curves without hysteresis are observed for. This anisotropy betweenplane andaxis occurs also in the magnetization reversal (MR), which is observed in theplane only. Starting from() virgin curves collected just below= 33 K withor, the memory-like effect was tested through magnetization switching induced byoralternating changes. Below, smalleris needed to switchsymmetrically foralongthan along, and, forswitching (2 K interval, constant), a largerchange is obtained alongthan along. The comparison with ferrimagnetic oxides which exhibit MR, like spinels or rare earth orthoferrites, shows that NiNbOis unique since only one magnetic cation over two sites in octahedral coordination is at play, thus providing a unique platform to studyswitching but also a challenge for theoretical interpretation.
NiNbO₃是一种绝缘补偿铁磁体,居里温度θ = 77 K,奈尔温度TN = 33 K。在此,我们报告了对使用图像炉中生长的毫米尺寸晶体的磁各向异性的研究。沿三个主要晶轴对齐进行的随温度变化的磁化强度测量显示出相似的居里 - 外斯温度(≈190 K)和相当相似的有效顺磁矩(从3.5到3.6)。这表明最强的磁相互作用是反铁磁相互作用,通过共面的NiO八面体将铁磁畸变的蜂窝层和锯齿状带耦合起来。这种强反铁磁耦合得到了密度泛函理论计算的支持,该计算没有发现任何位点间的铁磁相互作用,导致两个Ni位点的磁矩之间完全补偿。低于奈尔温度时随磁场的测量揭示了一种各向异性行为,对于在ab平面内的磁场,磁化回路为方形,而对于c轴方向的磁场,则观察到没有磁滞的线性(M - H)曲线。ab平面和c轴之间的这种各向异性也出现在磁化反转(MR)中,仅在ab平面中观察到。从刚好低于TN = 33 K时收集的(M - H)初始曲线开始,分别沿a轴或b轴,通过磁场或温度交替变化诱导的磁化切换来测试记忆效应。在奈尔温度以下,沿a轴对称切换所需的磁场比沿b轴切换所需的磁场小,并且对于温度切换(2 K间隔,恒定磁场)而言,沿a轴获得的磁场变化比沿b轴大。与表现出MR的铁磁氧化物(如尖晶石或稀土正铁氧体)的比较表明,NiNbO₃是独特的,因为在八面体配位的两个位点中只有一个磁性阳离子起作用,因此它不仅为研究磁化切换提供了一个独特的平台,也对理论解释提出了挑战。