Suppr超能文献

中国农村老年人孤独感的亚组和预测因素探索:潜在剖面分析。

Exploration of subgroups and predictors of loneliness among older adults in rural China: A latent profile analysis.

机构信息

Department of Nursing, College of Medical Science, Huzhou University, 759 Second Ring Road, Huzhou, Zhejiang, 313000, China.

Department of Personnel, The First People's Hospital of Huzhou, No.158, Back Square Road, Wuxing District, Huzhou, Zhejiang, 313000, China.

出版信息

BMC Geriatr. 2024 Feb 27;24(1):195. doi: 10.1186/s12877-024-04812-w.

Abstract

BACKGROUND

Loneliness is a negative emotional state that can lead to physical and mental health problems. This study's objective was to acquire an in-depth understanding of the heterogeneity and the predictors of loneliness among older adults in rural China and provide valuable references for practical interventions.

METHODS

Older rural adults in China (N = 680) were recruited between January and April 2023. Latent profile analysis (LPA) was employed to identify subgroups of loneliness among participants. Single-factor and multinomial logistic regression analyses were conducted to investigate predictors of loneliness.

RESULTS

The loneliness of rural older adults could be divided into three subgroups: low interaction loneliness group (55.0%), moderate emotional loneliness group (31.8%), and high loneliness group (13.2%). The subgroup predictors included age, gender, religious beliefs, marital status, living alone, number of chronic diseases, and smartphone use (P < 0.05).

CONCLUSION

This study identified a classification pattern for loneliness among older adults in rural areas of China, revealed the characteristics of different demographic variables in loneliness categories, and highlighted the heterogeneity of loneliness in this population. It serves as a theoretical reference for formulating intervention plans aimed at addressing various loneliness categories for local rural older adults.

CLINICAL TRIAL REGISTRATION

ChiCTR2300071591.

摘要

背景

孤独是一种消极的情绪状态,可导致身心健康问题。本研究旨在深入了解中国农村老年人孤独感的异质性及其预测因素,为实践干预提供有价值的参考。

方法

2023 年 1 月至 4 月,招募了中国农村老年人(N=680)。采用潜在剖面分析(LPA)识别参与者中孤独感的亚组。采用单因素和多项逻辑回归分析探讨孤独感的预测因素。

结果

农村老年人的孤独感可分为三组:低互动孤独组(55.0%)、中度情绪孤独组(31.8%)和高孤独组(13.2%)。亚组预测因素包括年龄、性别、宗教信仰、婚姻状况、独居、慢性疾病数量和智能手机使用(P<0.05)。

结论

本研究确定了中国农村老年人孤独感的分类模式,揭示了不同人口统计学变量在孤独感类别中的特征,并强调了该人群中孤独感的异质性。为制定针对当地农村老年人群体不同孤独感类别的干预计划提供了理论参考。

临床试验注册

ChiCTR2300071591。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515c/10898013/979970f8f826/12877_2024_4812_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验