Qin Lidong, Li Xiaoxu, Ren Geng, Yuan Rongyan, Wang Xinyu, Hu Zexu, Ye Chenwu, Zou Yangyang, Ding Peiqing, Zhang Hongjie, Cai Qiuquan
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
ChemSusChem. 2024 Jul 8;17(13):e202301781. doi: 10.1002/cssc.202301781. Epub 2024 Mar 18.
Poly(ethylene terephthalate) (PET), extensively employed in bottles, film, and fiber manufacture, has generated persistent environmental contamination due to its non-degradable nature. The resolution of this issue requires the conversion of waste PET into valuable products, often achieved through depolymerization into monomers. However, the laborious purification procedures involved in the extraction of monomers pose challenges and constraints on the complete utilization of PET. Herein, a strategy is demonstrated for the polymer-to-polymer upcycling of waste PET into high-value biodegradable and programmable materials named PEXT. This process involves reversible transesterifications dependent on ester bonds, wherein commercially available X-monomers from aliphatic diacids and diols are introduced, utilizing existing industrial equipment for complete PET utilization. PEXT features a programmable molecular structure, delivering tailored mechanical, thermal, and biodegradation performance. Notably, PEXT exhibits superior mechanical performance, with a maximal elongation at break of 3419.2 % and a toughness of 270.79 MJ m. These characteristics make PEXT suitable for numerous applications, including shape-memory materials, transparent films, and fracture-resistant stretchable components. Significantly, PEXT allows closed-loop recycling within specific biodegradable analogs by reprograming PET or X-monomers. This strategy not only offers cost-effective advantages in large-scale upcycling of waste PET into advanced materials but also demonstrates its enormous prospect in environmental conservation.
聚对苯二甲酸乙二酯(PET)广泛应用于瓶子、薄膜和纤维制造,因其不可降解的性质而造成了持续的环境污染。解决这个问题需要将废弃PET转化为有价值的产品,这通常通过解聚为单体来实现。然而,单体提取过程中繁琐的纯化程序对PET的完全利用构成了挑战和限制。在此,展示了一种将废弃PET进行聚合物到聚合物升级循环的策略,将其转化为名为PEXT的高价值可生物降解且可编程的材料。这个过程涉及依赖酯键的可逆酯交换反应,其中引入了来自脂肪族二酸和二醇的市售X单体,利用现有的工业设备实现PET的完全利用。PEXT具有可编程的分子结构,能提供定制的机械、热学和生物降解性能。值得注意的是,PEXT表现出卓越的机械性能,最大断裂伸长率为3419.2%,韧性为270.79 MJ·m 。这些特性使PEXT适用于众多应用,包括形状记忆材料、透明薄膜和抗断裂可拉伸部件。重要的是,PEXT通过对PET或X单体进行重新编程,能够在特定的可生物降解类似物中实现闭环回收。这种策略不仅在将废弃PET大规模升级循环为先进材料方面具有成本效益优势,而且在环境保护方面也展现出巨大的前景。