Qiao Chuan, Agnelli Filippo, Pokkalla Deepak Kumar, D'Ambrosio Nicholas, Pasini Damiano
MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada.
Adv Mater. 2024 Jun;36(23):e2313198. doi: 10.1002/adma.202313198. Epub 2024 Mar 8.
Shape morphing in bistable kirigami enables remarkable functionalities appealing to a diverse range of applications across the spectrum of length scale. At the core of their shape shifting lies the architecture of their repeating unit, where highly deformable slits and quasi-rigid rotating units often exhibit multiple symmetries that confer isotropic deployment obeying uniform scaling transformation. In this work, symmetry breaking in bistable kirigami is investigated to access geometric frustration and anisotropic morphing, enabling arbitrarily scaled deployment in planar and spatial bistable domains. With an analysis on their symmetry properties complemented by a systematic investigation integrating semi-analytical derivations, numerical simulations, and experiments on elastic kirigami sheets, this work unveils the fundamental relations between slit symmetry, geometric frustration, and anisotropic bistable deployment. Furthermore, asymmetric kirigami units are leveraged in planar and flat-to-3D demonstrations to showcase the pivotal role of shear deformation in achieving target shapes and functions so far unattainable with uniformly stretchable kirigami. The insights provided in this work unveil the role of slit symmetry breaking in controlling the anisotropic bistable deployment of soft kirigami metamaterials, enriching the range of achievable functionalities for applications spanning deployable space structures, wearable technologies, and soft machines.
双稳态剪纸中的形状变形能够实现卓越的功能,吸引了从微观到宏观各种长度尺度范围内的广泛应用。其形状变化的核心在于重复单元的结构,其中高度可变形的狭缝和准刚性旋转单元通常呈现多种对称性,从而实现服从均匀缩放变换的各向同性展开。在这项工作中,我们研究了双稳态剪纸中的对称性破缺,以实现几何挫折和各向异性变形,从而在平面和空间双稳态域中实现任意缩放的展开。通过对其对称性质的分析,并辅以结合半解析推导、数值模拟和弹性剪纸片实验的系统研究,这项工作揭示了狭缝对称性、几何挫折和各向异性双稳态展开之间的基本关系。此外,在平面和从平面到三维的演示中利用了不对称剪纸单元,以展示剪切变形在实现目标形状和功能方面的关键作用,而这些形状和功能是均匀可拉伸剪纸目前无法实现的。这项工作提供的见解揭示了狭缝对称性破缺在控制软剪纸超材料各向异性双稳态展开中的作用,丰富了可实现功能的范围,适用于可展开空间结构、可穿戴技术和软机器等应用。