Suppr超能文献

桥连多环倍半萜的最小真菌生物合成基因簇的发散生物合成。

Divergent Biosynthesis of Bridged Polycyclic Sesquiterpenoids by a Minimal Fungal Biosynthetic Gene Cluster.

机构信息

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.

出版信息

J Nat Prod. 2024 Apr 26;87(4):893-905. doi: 10.1021/acs.jnatprod.3c01161. Epub 2024 Feb 28.

Abstract

The bridged polycyclic sesquiterpenoids derived from sativene, isosativene, and longifolene have unique structures, and many chemical synthesis approaches with at least 10 steps have been reported. However, their biosynthetic pathway remains undescribed. A minimal biosynthetic gene cluster (BGC), named , encoding a sesquiterpene cyclase (BipA) and a cytochrome P450 (BipB) is characterized to produce such complex sesquiterpenoids with multiple carbon skeletons based on enzymatic assays, heterologous expression, and precursor experiments. BipA is demonstrated as a versatile cyclase with (-)-sativene as the dominant product and (-)-isosativene and (-)-longifolene as minor ones. BipB is capable of hydroxylating different enantiomeric sesquiterpenes, such as (-)-longifolene and (+)-longifolene, at C-15 and C-14 in turn. The C-15- or both C-15- and C-14-hydroxylated products are then further oxidized by unclustered oxidases, resulting in a structurally diverse array of sesquiterpenoids. Bioinformatic analysis reveals the BipB homologues as a discrete clade of fungal sesquiterpene P450s. These findings elucidate the concise and divergent biosynthesis of such intricate bridged polycyclic sesquiterpenoids, offer valuable biocatalysts for biotransformation, and highlight the distinct biosynthetic strategy employed by nature compared to chemical synthesis.

摘要

源于沙烯、异沙烯和长叶烯的桥连多环倍半萜具有独特的结构,已有至少 10 步的化学合成方法被报道。然而,其生物合成途径仍未被描述。一个最小的生物合成基因簇(BGC),命名为 ,编码一个倍半萜环化酶(BipA)和一个细胞色素 P450(BipB),基于酶促测定、异源表达和前体实验,该 BGC 被证明可以产生具有多种碳骨架的复杂倍半萜,如桥连多环倍半萜。BipA 是一种多功能的环化酶,以(-)-沙烯为主要产物,(-)-异沙烯和(-)-长叶烯为次要产物。BipB 能够羟基化不同的对映体倍半萜,如(-)-长叶烯和(+)-长叶烯,依次在 C-15 和 C-14 位。然后,C-15-或 C-15 和 C-14-羟基化产物被未聚类的氧化酶进一步氧化,导致结构多样的倍半萜类化合物。生物信息学分析显示,BipB 同源物是真菌倍半萜 P450 的一个离散分支。这些发现阐明了此类复杂桥连多环倍半萜的简洁和多样化生物合成,为生物转化提供了有价值的生物催化剂,并突出了自然界与化学合成相比所采用的独特生物合成策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验