Institute of Environmental Sciences, University of Leiden, Leiden, The Netherlands.
Center for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
Nanotoxicology. 2024 Mar;18(2):107-118. doi: 10.1080/17435390.2024.2321873. Epub 2024 Feb 29.
To date, research on the toxicity and potential environmental impacts of nanomaterials has predominantly focused on relatively simple and single-component materials, whilst more complex nanomaterials are currently entering commercial stages. The current study aimed to assess the long-term and size-dependent (60 and 500 nm) toxicity of a novel core-shell nanostructure consisting of a SiC core and TiO shell (SiC/TiO, 5, 25, and 50 mg L) to the common model organism . These novel core-shell nanostructures can be categorized as advanced materials. Experiments were conducted under environmentally realistic feeding rations and in the presence of a range of concentrations of humic acid (0.5, 2, 5, and 10 mg L TOC). The findings show that although effect concentrations of SiC/TiO were several orders of magnitude lower than the current reported environmental concentrations of more abundantly used nanomaterials, humic acid can exacerbate the toxicity of SiC/TiO by reducing aggregation and sedimentation rates. The EC values (mean ± standard error) based on nominal SiC/TiO concentrations for the 60 nm particles were 28.0 ± 11.5 mg L (TOC 0.5 mg L), 21.1 ± 3.7 mg L (TOC 2 mg L), 18.3 ± 5.4 mg L (TOC 5 mg L), and 17.8 ± 2.4 mg L (TOC 10 mg L). For the 500 nm particles, the EC50 values were 34.9 ± 16.5 mg L (TOC 0.5 mg L), 24.8 ± 5.6 mg L (TOC 2 mg L), 28.0 ± 10.0 mg L (TOC 5 mg L), and 23.2 ± 4.1 mg L (TOC 10 mg L). We argue that fate-driven phenomena are often neglected in effect assessments, whilst environmental factors such as the presence of humic acid may significantly influence the toxicity of nanomaterials.
迄今为止,纳米材料的毒性和潜在环境影响的研究主要集中在相对简单和单一成分的材料上,而目前更复杂的纳米材料正进入商业阶段。本研究旨在评估一种新型核壳纳米结构(由 SiC 核和 TiO 壳组成,粒径分别为 60nm 和 500nm)的长期和尺寸依赖性(60nm 和 500nm)毒性,所用模型生物为。这些新型核壳纳米结构可归类为先进材料。实验在实际的摄食条件下进行,并在一系列腐殖酸浓度(0.5、2、5 和 10mg L TOC)存在下进行。研究结果表明,尽管 SiC/TiO 的效应浓度比目前报道的更广泛使用的纳米材料的环境浓度低几个数量级,但腐殖酸可以通过降低聚集和沉降速率来加剧 SiC/TiO 的毒性。基于 SiC/TiO 名义浓度的 EC 值(平均值±标准误差)对于 60nm 颗粒分别为 28.0±11.5mg L(TOC 0.5mg L)、21.1±3.7mg L(TOC 2mg L)、18.3±5.4mg L(TOC 5mg L)和 17.8±2.4mg L(TOC 10mg L)。对于 500nm 颗粒,EC50 值分别为 34.9±16.5mg L(TOC 0.5mg L)、24.8±5.6mg L(TOC 2mg L)、28.0±10.0mg L(TOC 5mg L)和 23.2±4.1mg L(TOC 10mg L)。我们认为,在效应评估中往往忽略了命运驱动的现象,而环境因素,如腐殖酸的存在,可能会显著影响纳米材料的毒性。