Suppr超能文献

基于“噪声净化器”的智能手机辅助双色比率荧光传感平台用于即时检测食品中致病菌

An ultrasensitive smartphone-assisted bicolor-ratiometric fluorescence sensing platform based on a "noise purifier" for point-of-care testing of pathogenic bacteria in food.

机构信息

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.

出版信息

Food Chem. 2024 Jul 15;446:138805. doi: 10.1016/j.foodchem.2024.138805. Epub 2024 Feb 23.

Abstract

Non-specific binding in fluorescence resonance energy transfer (FRET) remains a challenge in foodborne pathogen detection, resulting in interference of high background signals. Herein, we innovatively reported a dual-mode FRET sensor based on a "noise purifier" for the ultrasensitive quantification of Escherichia coli O157:H7 in food. An efficient FRET system was constructed with polymyxin B-modified nitrogen-sulfur co-doped graphene quantum dots (N, S-GQDs@PMB) as donors and aptamer-modified yellow carbon dots (Y-CDs@Apt) as acceptors. Magnetic multi-walled carbon nanotubes (Fe@MWCNTs) were employed as a "noise purifier" to reduce the interference of the fluorescence background. Under the background purification mode, the sensitivity of the dual-mode signals of the FRET sensor has increased by an order of magnitude. Additionally, smartphone-assisted colorimetric analysis enabled point-of-care detection of E. coli O157:H7 in real samples. The developed sensing platform based on a "noise purifier" provides a promising method for ultrasensitive on-site testing of trace pathogenic bacteria in various foodstuffs.

摘要

非特异性结合在荧光共振能量转移(FRET)中仍然是食源性致病菌检测的一个挑战,导致高背景信号的干扰。在此,我们创新性地报道了一种基于“噪声净化器”的双模式 FRET 传感器,用于食品中大肠杆菌 O157:H7 的超灵敏定量。通过将多粘菌素 B 修饰的氮硫共掺杂石墨烯量子点(N, S-GQDs@PMB)作为供体和适配体修饰的黄色碳点(Y-CDs@Apt)作为受体构建了一个高效的 FRET 体系。磁性多壁碳纳米管(Fe@MWCNTs)被用作“噪声净化器”以减少荧光背景的干扰。在背景净化模式下,FRET 传感器的双模式信号的灵敏度提高了一个数量级。此外,智能手机辅助比色分析实现了实际样品中大肠杆菌 O157:H7 的即时检测。基于“噪声净化器”的传感平台为各种食品中痕量致病菌的现场超灵敏检测提供了一种很有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验