Farid Hafiz Muhammad Athar, Riaz Muhammad, Simic Vladimir, Peng Xindong
University of the Punjab, Lahore, Pakistan.
Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia.
PeerJ Comput Sci. 2024 Jan 31;10:e1742. doi: 10.7717/peerj-cs.1742. eCollection 2024.
The q-rung orthopair fuzzy set (q-ROPFS) is a kind of fuzzy framework that is capable of introducing significantly more fuzzy information than other fuzzy frameworks. The concept of combining information and aggregating it plays a significant part in the multi-criteria decision-making method. However, this new branch has recently attracted scholars from several domains. The goal of this study is to introduce some dynamic q-rung orthopair fuzzy aggregation operators (AOs) for solving multi-period decision-making issues in which all decision information is given by decision makers in the form of "q-rung orthopair fuzzy numbers" (q-ROPFNs) spanning diverse time periods. Einstein AOs are used to provide seamless information fusion, taking this advantage we proposed two new AOs namely, "dynamic q-rung orthopair fuzzy Einstein weighted averaging (DQROPFEWA) operator and dynamic q-rung orthopair fuzzy Einstein weighted geometric (DQROPFEWG) operator". Several attractive features of these AOs are addressed in depth. Additionally, we develop a method for addressing multi-period decision-making problems by using ideal solutions. To demonstrate the suggested approach's use, a numerical example is provided for calculating the impact of "coronavirus disease" 2019 (COVID-19) on everyday living. Finally, a comparison of the proposed and existing studies is performed to establish the efficacy of the proposed method. The given AOs and decision-making technique have broad use in real-world multi-stage decision analysis and dynamic decision analysis.
q阶正交对模糊集(q-ROPFS)是一种模糊框架,它能够引入比其他模糊框架多得多的模糊信息。信息的组合与聚合概念在多准则决策方法中起着重要作用。然而,这个新分支最近吸引了多个领域的学者。本研究的目的是引入一些动态q阶正交对模糊聚合算子(AO),以解决多周期决策问题,其中所有决策信息由决策者以跨越不同时间段的“q阶正交对模糊数”(q-ROPFN)形式给出。利用爱因斯坦AO提供无缝信息融合的优势,我们提出了两个新的AO,即“动态q阶正交对模糊爱因斯坦加权平均(DQROPFEWA)算子和动态q阶正交对模糊爱因斯坦加权几何(DQROPFEWG)算子”。深入探讨了这些AO的几个吸引人的特性。此外,我们开发了一种使用理想解来解决多周期决策问题的方法。为了说明所建议方法的应用,提供了一个数值例子来计算2019年“冠状病毒病”(COVID-19)对日常生活的影响。最后,对所提出的研究与现有研究进行比较,以确定所提方法的有效性。所给出的AO和决策技术在实际的多阶段决策分析和动态决策分析中具有广泛的应用。