Suppr超能文献

整合多模态计算机感知与神经技术的伦理考量

Ethical considerations for integrating multimodal computer perception and neurotechnology.

作者信息

Hurley Meghan E, Sonig Anika, Herrington John, Storch Eric A, Lázaro-Muñoz Gabriel, Blumenthal-Barby Jennifer, Kostick-Quenet Kristin

机构信息

Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States.

Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, United States.

出版信息

Front Hum Neurosci. 2024 Feb 16;18:1332451. doi: 10.3389/fnhum.2024.1332451. eCollection 2024.

Abstract

BACKGROUND

Artificial intelligence (AI)-based computer perception technologies (e.g., digital phenotyping and affective computing) promise to transform clinical approaches to personalized care in psychiatry and beyond by offering more objective measures of emotional states and behavior, enabling precision treatment, diagnosis, and symptom monitoring. At the same time, passive and continuous nature by which they often collect data from patients in non-clinical settings raises ethical issues related to privacy and self-determination. Little is known about how such concerns may be exacerbated by the integration of neural data, as parallel advances in computer perception, AI, and neurotechnology enable new insights into subjective states. Here, we present findings from a multi-site NCATS-funded study of ethical considerations for translating computer perception into clinical care and contextualize them within the neuroethics and neurorights literatures.

METHODS

We conducted qualitative interviews with patients ( = 20), caregivers ( = 20), clinicians ( = 12), developers ( = 12), and clinician developers ( = 2) regarding their perspective toward using PC in clinical care. Transcripts were analyzed in MAXQDA using Thematic Content Analysis.

RESULTS

Stakeholder groups voiced concerns related to (1) perceived invasiveness of passive and continuous data collection in private settings; (2) data protection and security and the potential for negative downstream/future impacts on patients of unintended disclosure; and (3) ethical issues related to patients' limited versus hyper awareness of passive and continuous data collection and monitoring. Clinicians and developers highlighted that these concerns may be exacerbated by the integration of neural data with other computer perception data.

DISCUSSION

Our findings suggest that the integration of neurotechnologies with existing computer perception technologies raises novel concerns around dignity-related and other harms (e.g., stigma, discrimination) that stem from data security threats and the growing potential for reidentification of sensitive data. Further, our findings suggest that patients' awareness and preoccupation with feeling monitored via computer sensors ranges from hypo- to hyper-awareness, with either extreme accompanied by ethical concerns (consent vs. anxiety and preoccupation). These results highlight the need for systematic research into how best to implement these technologies into clinical care in ways that reduce disruption, maximize patient benefits, and mitigate long-term risks associated with the passive collection of sensitive emotional, behavioral and neural data.

摘要

背景

基于人工智能(AI)的计算机感知技术(如数字表型分析和情感计算)有望通过提供更客观的情绪状态和行为测量方法,改变精神病学及其他领域的个性化临床治疗方法,实现精准治疗、诊断和症状监测。与此同时,它们通常在非临床环境中从患者那里收集数据的被动和持续性质引发了与隐私和自决相关的伦理问题。对于神经数据的整合可能如何加剧此类担忧,人们知之甚少,因为计算机感知、人工智能和神经技术的并行发展使人们对主观状态有了新的认识。在此,我们展示了一项由美国国立转化医学科学研究所(NCATS)资助的多中心研究结果,该研究探讨了将计算机感知转化为临床护理的伦理考量,并将其置于神经伦理学和神经权利文献的背景下进行分析。

方法

我们对患者(n = 20)、护理人员(n = 20)、临床医生(n = 12)、开发者(n = 12)和临床医生兼开发者(n = 2)进行了定性访谈,了解他们对在临床护理中使用计算机感知技术的看法。使用MAXQDA软件,采用主题内容分析法对访谈记录进行分析。

结果

利益相关者群体表达了与以下方面相关的担忧:(1)在私人环境中被动和持续数据收集被认为具有侵入性;(2)数据保护和安全,以及意外披露对患者产生负面下游/未来影响的可能性;(3)与患者对被动和持续数据收集及监测的有限意识与过度意识相关的伦理问题。临床医生和开发者强调,神经数据与其他计算机感知数据的整合可能会加剧这些担忧。

讨论

我们的研究结果表明,神经技术与现有计算机感知技术的整合引发了围绕尊严相关及其他危害(如污名化、歧视)的新担忧,这些危害源于数据安全威胁以及敏感数据重新识别可能性的不断增加。此外,我们的研究结果表明,患者对通过计算机传感器被监测的意识和关注程度从低意识到过度意识不等,而这两种极端情况都伴随着伦理问题(同意与焦虑及关注)。这些结果凸显了有必要进行系统研究,以确定如何以减少干扰、最大化患者受益并减轻与被动收集敏感情绪、行为和神经数据相关的长期风险的方式,将这些技术最佳地应用于临床护理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验