Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA.
Mol Oral Microbiol. 2024 Oct;39(5):354-367. doi: 10.1111/omi.12458. Epub 2024 Mar 4.
Pathobionts associated with periodontitis, such as Treponema denticola, must possess numerous sensory transduction systems to adapt to the highly dynamic subgingival environment. To date, the signaling pathways utilized by T. denticola to rapidly sense and respond to environmental stimuli are mainly unknown. Bis-(3'-5') cyclic diadenosine monophosphate (c-di-AMP) is a nucleotide secondary messenger that regulates osmolyte transport, central metabolism, biofilm development, and pathogenicity in many bacteria but is uncharacterized in T. denticola. Here, we studied c-di-AMP signaling in T. denticola to understand how it contributes to T. denticola physiology. We demonstrated that T. denticola produces c-di-AMP and identified enzymes that function in the synthesis (TDE1909) and hydrolysis (TDE0027) of c-di-AMP. To investigate how c-di-AMP may impact T. denticola cellular processes, a screening assay was performed to identify putative c-di-AMP receptor proteins. This approach identified TDE0087, annotated as a potassium uptake protein, as the first T. denticola c-di-AMP binding protein. As potassium homeostasis is critical for maintaining turgor pressure, we demonstrated that T. denticola c-di-AMP concentrations are impacted by osmolarity, suggesting that c-di-AMP negatively regulates potassium uptake in hypoosmotic solutions. Collectively, this study demonstrates T. denticola utilizes c-di-AMP signaling, identifies c-di-AMP metabolism proteins, identifies putative receptor proteins, and correlates c-di-AMP signaling to osmoregulation.
与牙周炎相关的病原体,如密螺旋体,必须拥有许多感觉转导系统,以适应高度动态的龈下环境。迄今为止,密螺旋体用于快速感知和响应环境刺激的信号通路主要是未知的。双-(3'-5')环二腺苷酸(c-di-AMP)是一种核苷酸第二信使,可调节渗透溶质转运、中心代谢、生物膜发育和许多细菌的致病性,但在密螺旋体中尚未被描述。在这里,我们研究了密螺旋体中的 c-di-AMP 信号转导,以了解它如何促进密螺旋体的生理学。我们证明密螺旋体产生 c-di-AMP,并鉴定了在 c-di-AMP 合成(TDE1909)和水解(TDE0027)中起作用的酶。为了研究 c-di-AMP 如何影响密螺旋体细胞过程,进行了筛选实验以鉴定假定的 c-di-AMP 受体蛋白。这种方法鉴定了 TDE0087,注释为钾摄取蛋白,作为密螺旋体的第一个 c-di-AMP 结合蛋白。由于钾离子稳态对于维持膨压至关重要,我们证明密螺旋体的 c-di-AMP 浓度受渗透压影响,表明 c-di-AMP 在低渗溶液中负调节钾离子摄取。总之,这项研究表明密螺旋体利用 c-di-AMP 信号转导,鉴定 c-di-AMP 代谢蛋白,鉴定假定的受体蛋白,并将 c-di-AMP 信号转导与渗透压调节相关联。