Suppr超能文献

使用性连锁基因的定量 PCR(qPCR)和逻辑回归模型对鸟类进行分子性别鉴定。

Molecular sexing of birds using quantitative PCR (qPCR) of sex-linked genes and logistic regression models.

机构信息

U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA.

出版信息

Mol Ecol Resour. 2024 May;24(4):e13946. doi: 10.1111/1755-0998.13946. Epub 2024 Mar 4.

Abstract

The ability to sex individuals is an important component of many behavioural and ecological investigations and provides information for demographic models used in conservation and species management. However, many birds are difficult to sex using morphological characters or traditional molecular sexing methods. In this study, we developed probabilistic models for sexing birds using quantitative PCR (qPCR) data. First, we quantified distributions of gene copy numbers at a set of six sex-linked genes, including the sex-determining gene DMRT1, for individuals across 17 species and seven orders of birds (n = 150). Using these data, we built predictive logistic models for sex identification and tested their performance with independent samples from 51 species and 13 orders (n = 209). Models using the two loci most highly correlated with sex had greater accuracy than models using the full set of sex-linked loci, across all taxonomic levels of analysis. Sex identification was highly accurate when individuals to be assigned were of species used in model building. Our analytical approach was widely applicable across diverse neognath bird lineages spanning millions of years of evolutionary divergence. Unlike previous methods, our probabilistic framework incorporates uncertainty around qPCR measurements as well as biological variation within species into decision-making rules. We anticipate that this method will be useful for sexing birds, including those of high conservation concern and/or subsistence value, that have proven difficult to sex using traditional approaches. Additionally, the general analytical framework presented in this paper may also be applicable to other organisms with sex chromosomes.

摘要

鉴定个体的性别是许多行为学和生态学研究的重要组成部分,可为保护和物种管理中使用的种群模型提供信息。然而,许多鸟类很难通过形态特征或传统的分子性别鉴定方法进行性别鉴定。在这项研究中,我们使用定量 PCR(qPCR)数据开发了鸟类性别鉴定的概率模型。首先,我们在 17 种鸟类和 7 个鸟类目(n=150)的个体中量化了六个性连锁基因(包括性别决定基因 DMRT1)的基因拷贝数分布。使用这些数据,我们为性别鉴定构建了预测逻辑模型,并使用来自 51 个物种和 13 个鸟类目的独立样本(n=209)对其性能进行了测试。在所有分析的分类学水平上,与性别高度相关的两个基因座的模型比使用全性连锁基因座的模型具有更高的准确性。当要分配的个体是用于模型构建的物种时,性别鉴定的准确性很高。我们的分析方法广泛适用于跨越数百万年进化分歧的不同新鸟类谱系。与以前的方法不同,我们的概率框架将 qPCR 测量的不确定性以及物种内的生物学变异性纳入决策规则中。我们预计这种方法将有助于鉴定鸟类的性别,包括那些使用传统方法难以鉴定性别的具有高度保护意义和/或具有生存价值的鸟类。此外,本文中提出的一般分析框架也可能适用于具有性染色体的其他生物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验